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Abstract

Over the last decade, there has been an increasing trend towards digitalization in health-
care, where a growing amount of patient data is collected and stored electronically. These
recorded data are known as electronic health records. They are the basis for state-of-the-
art research on clinical decision support so that better patient care can be delivered with
the help of advanced analytical techniques like machine learning. Among various technical
fields in machine learning, representation learning is about learning good representations
from raw data to extract useful information for downstream prediction tasks. Deep learn-
ing, a crucial class of methods in representation learning, has achieved great success in
many fields such as computer vision and natural language processing. These technical
breakthroughs would presumably further advance the research and development of data
analytics in healthcare. This thesis addresses clinically relevant research questions by de-
veloping algorithms based on state-of-the-art representation learning techniques. When a
patient visits the hospital, a physician will suggest a treatment in a deterministic manner.
Meanwhile, uncertainty comes into play when the past statistics of treatment decisions
from various physicians are analyzed, as they would possibly suggest different treatments,
depending on their training and experiences. The uncertainty in clinical decision-making
processes is the focus of this thesis. The models developed for supporting these processes
will therefore have a probabilistic nature. More specifically, the predictions are predictive
distributions in regression tasks and probability distributions over, e.g., different treatment
decisions, in classification tasks. The first part of the thesis is concerned with prescrip-
tive analytics to provide treatment recommendations. Apart from patient information and
treatment decisions, the outcome after the respective treatment is included in learning
treatment suggestions. The problem setting is known as learning individualized treat-
ment rules and is formulated as a contextual bandit problem. A general framework for
learning individualized treatment rules using data from observational studies is presented
based on state-of-the-art representation learning techniques. From various offline eval-
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uation methods, it is shown that the treatment policy in our proposed framework can
demonstrate better performance than both physicians and competitive baselines. Sub-
sequently, the uncertainty-aware regression models in diagnostic and predictive analytics
are studied. Uncertainty-aware deep kernel learning models are proposed, which allow
the estimation of the predictive uncertainty by a pipeline of neural networks and a sparse
Gaussian process. By considering the input data structure, respective models are devel-
oped for diagnostic medical image data and sequential electronic health records. Various
pre-training methods from representation learning are adapted to investigate their impacts
on the proposed models. Through extensive experiments, it is shown that the proposed
models delivered better performance than common architectures in most cases. More im-
portantly, uncertainty-awareness of the proposed models is illustrated by systematically ex-
pressing higher confidence in more accurate predictions and less confidence in less accurate
ones. The last part of the thesis is about missing data imputation in descriptive analytics,
which provides essential evidence for subsequent decision-making processes. Rather than
traditional mean and median imputation, a more advanced solution based on generative
adversarial networks is proposed. The presented method takes the categorical nature of
patient features into consideration, which enables the stabilization of the adversarial train-
ing. It is shown that the proposed method can better improve the predictive accuracy
compared to traditional imputation baselines.



Zusammenfassung

In den vergangenen zehn Jahren entwickelte sich eine steigende Tendenz zur Digitalisierung
im Gesundheitswesen, wobei eine zunehmende Anzahl der Patientendaten elektronisch
gesammelt und gespeichert wird. Diese aufgezeichneten Daten sind auch bekannt als elek-
tronische Gesundheitsakten. Sie bilden die Grundlage für die moderne Forschung über klin-
ische Entscheidungsunterstützung, sodass eine bessere Patientenversorgung mithilfe von
fortschrittlichen Analysetechniken wie maschinellem Lernen gewährleistet werden kann.
Einer der vielen technischen Bereiche des maschinellen Lernens ist Repräsentation-Lernen,
das gute Repräsentationen aus Rohdaten lernt, um nützliche Informationen für diverse
Aufgaben zu extrahieren. Deep Learning, eine wichtige Untergruppe des Repräsentation-
Lernens, hat große Erfolge in verschiedenen Bereichen erzielt, wie z.B. in Computervision
und Verarbeitung natürlicher Sprache. Dieser technische Durchbruch kann wahrschein-
lich auch die Forschung und Entwicklung der Datenanalyse im Gesundheitswesen weiter
fördern. Die vorliegende Arbeit konzentriert sich auf die Behandlung klinisch relevanter
Forschungsfragen mittels moderner Techniken des Repräsentation-Lernens. Wenn die Pa-
tientin oder der Patient das Krankenhaus besucht, wird die Ärztin oder der Arzt eine
Behandlung deterministisch empfehlen. Dabei kommt die Ungewissheit ins Spiel, wenn
die vergangenen Statistiken der Behandlungsentscheidungen von verschiedenen Ärztin-
nen und Ärzten analysiert werden, weil sie aufgrund unterschiedlicher Ausbildung und
Erfahrung eventuell andere Behandlungen empfehlen würden. Diese Ungewissheitsper-
spektive in klinischen Entscheidungsprozessen ist der Schwerpunkt dieser Arbeit. Die für
klinische Entscheidungsunterstützung entwickelten Modelle haben deswegen einen prob-
abilistischen Charakter. Genauer gesagt sind die Vorhersagen aus den Modellen in der
klinischen Entscheidungsunterstützung prädiktive Verteilungen bei Regressionsaufgaben
und Wahrscheinlichkeitsverteilungen über z.B. verschiedene Behandlungsentscheidungen
bei Klassifizierungsaufgaben. Der erste Teil dieser Arbeit befasst sich mit präskriptiver
Analytik, um geeignete Behandlungen zu empfehlen. Neben Patienteninformationen und
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Behandlungsentscheidung wird ebenfalls das Ergebnis der jeweiligen Behandlung beim
Lernen der Behandlungsempfehlung eingeschlossen. Die Fragestellung ist auch bekannt
als das Lernen von individualisierten Behandlungsstrategien und wird als ein Contex-
tual Bandit Problem formuliert. Ein allgemeiner Rahmen für das Lernen individual-
isierter Behandlungsstrategien mit Daten aus Beobachtungsstudien wird basierend auf
modernen Techniken des Repräsentation-Lernens präsentiert. Von verschiedenen Offline-
Evaluierungsmethoden wird gezeigt, dass die Behandlungsstrategie aus unserem vorgeschla-
genen Rahmen eine bessere Leistung als Ärztinnen, Ärzte und wettbewerbsfähige Base-
lines demonstriert. Anschließend werden ungewissheitsbewusste Regressionsmodelle von
diagnostischer und prädiktiver Analytik erforscht. Ungewissheitsbewusste Deep Kernel
Learning Modelle werden vorgeschlagen, die die Einschätzung der Ungewissheit durch eine
Pipeline von neuronalen Netzwerke und einem sparse Gaussian Process ermöglichen. Unter
Berücksichtigung der Eingabedaten-Struktur werden die jeweiligen Modelle für diagnostis-
che medizinische Bilddaten und longitudinale elektronische Gesundheitsakten entwickelt.
Unterschiedliche Pre-trainingsmethoden aus Repräsentation-Lernen werden angepasst, um
die Auswirkungen auf die vorgeschlagenen Modelle zu untersuchen. Nach zahlreichen Ex-
perimente wird gezeigt, dass die vorgeschlagenen Modelle in den meisten Fällen eine bessere
Leistung als übliche Architekturen liefern. Noch wichtiger wird das Ungewissheitsbe-
wusstsein der vorgeschlagenen Modelle durch systematisch höheres Vertrauen in präzisere
Vorhersagen und niedrigeres Vertrauen in weniger präzisere Vorhersagen verdeutlicht. Der
letzte Teil dieser Arbeit ist über das Problem der fehlenden Daten in der deskriptiven An-
alytik, die wichtige Hinweise für die nachfolgenden Entscheidungsprozesse bietet. Anstatt
traditioneller Methoden wie Mittelwert- und Medianwert-Imputation wird eine fortschrit-
tlichere Lösung basierend auf Generative Adversarial Networks vorgeschlagen. Die vor-
legte Methode berücksichtigt den kategorischen Charakter der Patientenmerkmale, womit
die Stabilisierung des Adversarial Trainings ermöglicht wird. Es wurde gezeigt, dass die
vorgeschlagene Methode die Vorhersagegenauigkeit gegenüber traditionellen Imputation-
Baselines verbessern konnte.
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Chapter 1

Introduction

The purpose of this chapter is to offer a technical background of all contributions cov-
ered in the following chapters. Section 1.1 includes an overview of deep learning as a
powerful representation learning technique. The topic is motivated from the perspective
of general machine learning and artificial intelligence in subsection 1.1.1. With notations
introduced in subsection 1.1.2, different neural network architectures are summarized in
subsection 1.1.3. The respective implications in the medical applications are presented in
subsection 1.1.4. Section 1.2 provides an introduction from the perspective of analytics
in healthcare. In its subsequent subsections, the technical background of each chapter is
explained, including motivations, problem settings, related works, and highlighted contri-
butions.

1.1 Deep Learning as Representation Learning

1.1.1 Motivation

Machine learning (ML) is a technical field addressing problems of constructing computer
programs to improve with experience automatically (Mitchell, 1997). Meanwhile, the goal
of artificial intelligence (AI) is to build intelligent entities being capable of perceiving,
understanding, predicting, and even manipulating the outside world (Russell and Norvig,
2009). Over the past decades, ML has found most interest in achieving these goals and
therefore serves as a foundation for the modern AI among different technical fields (Russell
and Norvig, 2009; Murphy, 2012). Unlike statistical modeling, the ML community lays
more emphasis on predictive accuracy instead of data models. This is also regarded as the
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algorithmic modeling culture in the statistics community (Breiman, 2001).
In conventional machine learning, the performance of a learning algorithm largely de-

pends on the quality of hand-crafted features from, e.g., domain experts, which is also
regarded as sample representations. The pre-processing and transformation of data from
raw inputs to sample representations is known as feature engineering. In addition, many
algorithms assume a low-dimensional set up of sample representations to avoid the curse of
dimensionality (Bellman, 1966). If the dimensionality of the feature space is too high, the
standard recipe involves algorithms of either dimensionality reduction or feature selection.
However, for most real-world tasks, it is not easy to know how features could be extracted.
Especially with unstructured data, it remains difficult even for those who have substantial
prior knowledge. Examples include raw pixel valued images or a sequence of words, corre-
sponding to the problem settings in computer vision (CV) and natural language processing
(NLP), respectively. It is thus tempting to ask whether it is possible to automate learning
representations from raw inputs.

To learn good representations, several priors are proven to be helpful, including smooth-
ness and hierarchical organization of explanatory factors (Bengio et al., 2013). In par-
ticular, with an increasing amount of data being collected and the advance of modern
computing hardware modules like Graphics Processing Units (GPUs), deep learning (DL)
shows “unreasonable” effectiveness in many real-world use cases (Sejnowski, 2020). As an
important class of methods in representation learning, DL belongs to ML but enables the
learning of very complex functions in an end-to-end fashion from raw inputs (LeCun et al.,
2015). The breakthroughs with DL arguably started from the encouraging results on speech
recognition by Mohamed et al. (2009) and state-of-the-art performance in object recogni-
tion on ImageNet from Krizhevsky et al. (2012), while the origin of Deep Neural Networks
(DNNs) dates back to the perceptron in the mid-twentieth century from Rosenblatt (1961).
The inductive bias (model assumptions) of DNNs enables the self-organized representation
learning from high-dimensional input data, which nicely addresses the above-discussed
limitations of traditional machine learning.

1.1.2 Notation

In this chapter, scalars are mostly denoted by lowercase letters x; vectors are denoted by
bold lowercase letters x with elements xi; matrices are denoted by bold uppercase letters
X with entries xij in the i-th row and j-th column; sets are denoted by calligraphic letters
such as X with the cardinality |X |. Vectors are assumed to be column vectors, i.e., x ∈ Rp.
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Concatenating n vectors horizontally results in a matrix as X := [x1, . . . , xn] ∈ Rp×n.

1.1.3 Neural Networks-Based Building Blocks

Various NN architectures have been proposed to address the challenges of data having
a structured or unstructured nature. The inductive bias from Multilayer Perceptrons,
Convolutional Neural Networks, and Recurrent Neural Networks turns out to be most
widely used to learn latent representations from raw inputs. These networks are involved
as building blocks in the published work in the following chapters. In this subsection, we
introduce the definitions and summarize characteristics of these NNs.

Multilayer Perceptrons

Multilayer Perceptrons (MLP), also known as Deep Feedforward Networks (DFN) and
Fully Connected Networks (FCN), are essential building blocks for modern DNNs. From
the very first idea of linear perceptrons by Rosenblatt (1961) to the more recent variants
like gMLP by Liu et al. (2021) and MLP-Mixer by Tolstikhin et al. (2021), MLPs have
always been attracting much attention in the neural network research community. As
a universal approximator, a single-layer MLP with an infinite number of hidden units
has been proven to be able to well approximate any reasonable function (Cybenko, 1989;
Hornik, 1991; Pinkus, 1999). In practice, we use MLPs with a finite number of hidden
units as a powerful approximation model.

As shown in Figure 1.1, an MLP has at least three layers of nodes, an input layer of
nodes, several hidden layers of nodes and an output layer of nodes. In supervised learning,
the input and output layers of nodes correspond to raw inputs and labels, respectively,
and the naming of hidden is based on the fact that these hidden layers of nodes are
not observed in the datasets. Within each hidden layer of nodes, activation functions are
applied to introduce a non-linearity between the layers. Note that the non-linear activation
function is critical as otherwise, the composition of multiple linear layers can be merged
into a single layer.

Formally, the mapping between each layer of nodes corresponds to a function f (l)(·),
where l refers to the index of the respective output layer of nodes. With the default
activation being the rectified linear unit (ReLU) (Nair and Hinton, 2010), the l-th mapping
function can be expressed as

f (l)(x; W (l), b(l)) = max{0, W (l)x + b(l)},
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Figure 1.1: An MLP with three hidden layers, which consumes a four-dimensional vector
as input and produces a three-dimensional target variable.

where W (l), b(l) are the weighting matrix and the bias term, respectively.
The function of a complete MLP can be expressed compactly as a composition of

functions. For example, the entire function of an MLP with three hidden layers in Fig. 1.1
is

f(x; W , B) := f (4)

f (3)
(

f (2)
(
f (1)(x)

)),

where W , B denotes the sets of weighting matrices {W (i)}4
i=1 and bias terms {b(i)}4

i=1,
respectively. And the activation function in f (4) is usually not ReLU but depends on the
type of target variables, such as the softmax function for multi-class classification tasks.

The learning of the parameters is formulated as an optimization problem, which refers to
using backpropagation (BP) algorithms to minimize a task-related loss function, e.g., Mean
Squared Error (MSE) in regression problems and cross-entropy in classification problems.
More concretely, the optimization algorithms are gradient descent-based methods, ranging
from the classical stochastic gradient descent (SGD) (Robbins and Monro, 1951; Bottou
et al., 1998) to the popular Adam optimizer (Kingma and Ba, 2015).

It has been shown that many functions can be represented much more efficiently with a
deep network structure (multiple layers) than a shallow one (one hidden layer) (Delalleau
and Bengio, 2011), which motivates the building of neural networks with an increasing
depth. However, with a growing depth of the network, the training of an MLP becomes



1.1 Deep Learning as Representation Learning 5

more difficult. A careful initialization of the trainable parameters has shown to be beneficial
to train ReLU-based deep networks (Glorot and Bengio, 2010; He et al., 2015). In addition,
batch normalization has been proposed to accelerate the training by reducing internal
covariate shift (Ioffe and Szegedy, 2015). Meanwhile, a deeper network structure introduces
inevitably more trainable parameters, which could result in problems like overfitting. When
the number of trainable parameters vastly exceeds the number of data samples, it is called
over-parameterized. To retain the generalization ability of the over-parameterized models,
regularization is an important and effective solution, which refers to adding a penalty term
in the loss function to constrain the value of these parameters (Gelman and Vehtari, 2021).
Especially for neural networks, Dropout is proposed as a simple form of regularization,
which randomly drops units in the neural network during the training (Srivastava et al.,
2014).

Convolutional Neural Networks

The convolution operation can be viewed as a weighted average operation between two
functions. In NNs’ terminology, the first function refers to the input, the second is a
kernel or a filter with trainable parameters, and the respective output is a feature map
(Goodfellow et al., 2016). If there are one or more convolutional operations within a
neural network, it is named after Convolutional Neural Networks (CNNs) (LeCun et al.,
1989, 1995). CNNs turn out to be especially useful for processing data having a grid-like
topology, e.g., one-dimensional time series data lying on the grid of a time axis, two- or
three-dimensional image data lying on the grid of pixels.

Formally, we denote the convolution operation with an asterisk, ∗. The feature map s

from a one-dimensional (discrete) convolution operation is defined as

si = (x ∗ k)i =
L−1∑
l=0

xi+lkl,

where x ∈ Rp is the input vector, k ∈ RL is the kernel vector, (·)i is the i-th element in a
vector, and L ∈ Z+ is the size of the kernel.

Note that the input x has the index i + m instead of i − m to avoid the flipping of
the kernel, which makes it indeed a cross-correlation operation (Goodfellow et al., 2016).
However, in DL, the difference between these operations is negligible due to the trainable
nature of the kernel parameters. Similarly, the feature map S from a two-dimensional
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Figure 1.2: A 3x3 convolutional kernel applied on a randomly generated 6x6 matrix with
no padding and stride being one.

(discrete) convolution operation is defined as

sij = (X ∗ K)ij =
H−1∑
h=0

W −1∑
w=0

xi+h,j+wkhw,

where X ∈ Rp×q is the input matrix, K ∈ RH×W is the kernel matrix, (·)ij is the ij-th
entry in a matrix, H, W ∈ Z+ are the height and width of the kernel. An example of the
2D convolution operation is shown in Figure 1.2, where Dumoulin and Visin (2016) provide
more technical details, such as different paddings or strides.

Compared with matrix multiplications in MLPs, the convolution operations enjoy the
property of parameter sharing (the same kernel applies to different locations) and sparse
connections (output values only depend on a few inputs). Consequently, there are usually
fewer trainable parameters in CNNs than in MLPs for the same task. Similar to MLPs,
non-linear activation functions are applied to the feature maps as convolution operations
are, in essence, also linear. On the other hand, another particular operator in CNNs is the
pooling function, which replaces the neighboring outputs with their summary statistics,
such as averaging or maximum values, corresponding to average pooling and max pooling,
respectively. The pooling functions facilitate learning representations being invariant to
small translations of the inputs, which is vital for capturing the presence of certain features
rather than their locations. In addition, we can use the pooling functions to learn latent
representations with a fixed size, no matter how large the size of inputs is.

With these basic CNN-specific functions, the architecture of CNNs has evolved for a
long time. In short, there is a trend of an increasing number of layers with more trainable
parameters. For example, LeNet (LeCun et al., 1998) has 60 thousand trainable parameters
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while VGG (Simonyan and Zisserman, 2014) owns 138 million. Meanwhile, the innovation
from new building blocks further pushes forward the limit of CNNs, such as the skip con-
nections in ResNet (He et al., 2016) and cross-layer information flow in DenseNet (Huang
et al., 2017). Khan et al. (2020) offer a complete overview of the recent development of
deep CNNs.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are the specialized NNs for processing sequential data,
such as text data in NLP. Similar to CNNs, the modeling advantage of RNNs over MLPs is
also attributed to parameter sharing. On the other hand, RNNs model the sequential data
in a very different way to CNNs. Concretely speaking, given a sequence of input vectors,
each element from the 1D convolutional operation outputs is based on some neighboring
features in the input multiplied by the kernel. By comparison, each output element from
an RNN is a function of the input vectors at their respective previous time steps. The later
time step an output element refers to, the larger amount of input vectors it depends on.
The gist of parameter sharing comes to RNNs by repeatably applying the function with
the same parameters to compute latent representations and outputs.

Formally, the latent representations ht and output predictions ŷt of a simple RNN in
the Elmen architecutre (Elman, 1990) are learned by

ht = g1(Uxt + V ht−1 + bh)

ŷt = g2(W ht + by),

where U , V , W are the input-to-hidden, hidden-to-hidden, hidden-to-output weighting
matrices, bh, by are the bias terms, g1(·) is an activation function, e.g., a hyperbolic tangent
function, tanh, and g2(·) is a target dependent activation function like a softmax function.

As shown in Figure 1.3, the latent representations ht and the output prediction ŷt are
functions of all its previous input vectors from x0 to xt. The trainable parameters in the
functions, such as the weighting matrices U , V , W , are shared across all time steps, which
facilitates the generalization to sequential inputs with variable lengths. If there is only
one single time step in RNN, the model degenerates to an MLP with one hidden layer.
Moreover, the length of the input vectors does not have to match the length of the outputs,
which results in various task-specific RNN types, such as many-to-many, many-to-one, or
one-to-many1.
1More RNN types can be found at http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/.
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ŷt

xt · · ·

· · ·

· · ·V V

U U U U

W W W W

U

V

W

Figure 1.3: Recurrent Neural Networks in a rolled (left) and an unrolled view (right).
Given sequential inputs {xt}T

t=0, the RNN output predictions {ŷt}T
t=0 through latent rep-

resentations {ht}T
t=0.

However, the long-term dependency of output elements in later time steps could also
hinder the information flow, i.e., the input vectors in earlier time steps have a relatively
smaller influence than the more recent ones. When RNNs are trained with gradient-
based algorithms such as back-propagation through time (Werbos, 1990), the long-term
dependency leads to practical training issues known as vanishing gradients (Bengio et al.,
1994; Hochreiter, 1998), which means the gradient from the error caused in later predictions
are difficult to be propagated to trainable parameters in earlier time steps. To facilitate
the training with long-term dependencies, more advanced RNNs are proposed with gating
mechanisms, where long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997)
and gated recurrent unit (GRU) (Chung et al., 2014) are the two most successful models.
Formally, if we follow definitions in Chung et al. (2014) and Graves et al. (2013), the
modeling of the latent representations ht in LSTM is

it = σ (Wxixt + Whiht−1 + Wcict−1 + bi)

ft = σ (Wxfxt + Whfht−1 + Wcfct−1 + bf )

ct = ft ⊙ ct−1 + it ⊙ tanh (Wxcxt + Whcht−1 + bc)

ot = σ (Wxoxt + Whoht−1 + Wcoct + bo)

ht = ot ⊙ tanh (ct)
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while in GRU, it is

zt = σ (Wxzxt + Whzht−1 + bz)

rt = σ (Wxrxt + Whrht−1 + br)

ĥt = tanh (Wxhxt + Wrh (rt ⊙ ht−1) + bh)

ht = (1 − zt) ⊙ ht−1 + zt ⊙ ĥt

where σ(·) denotes the sigmoid function, ⊙ denotes the element-wise multiplication, it, ft, ot

are the input, forget and output gates in LSTM, and rt, zt are the update or reset gates
in GRU.

1.1.4 Implications in Medical Applications

Since the introduction of the Electronic Health Records (EHRs), a similar trend of col-
lecting and creating big datasets has been observed in the healthcare domain (Halpern
et al., 2016; Tresp et al., 2016; Topol, 2019). The series of Medical Information Mart for
Intensive Care (MIMIC) databases can be seen as a representative example of this move-
ment (Moody and Mark, 1996; Saeed et al., 2011; Johnson et al., 2016, 2019, 2021). At the
same time, physicians are becoming overwhelmed by the increasing amount of patient data,
as it becomes wider in terms of features and longer in terms of timestamps. To this end,
data-driven methods such as ML are expected to play an important role in providing better
patient care. Unlike some other online advertisement domains, where several wrong predic-
tions of the model are possibly tolerant, the treatment decisions in healthcare go through
a complex process and require careful administration. Thus, data-driven clinical decision
support (CDS) is preferred over fully automated solutions, where physicians’ decisions can
benefit from the second opinions offered by the data-driven models (Zan et al., 2010). The
EHRs can be collected and saved in many forms, ranging from structured data like tabular
data to unstructured data like X-ray images, clinical notes, and genomic sequences (Yu
et al., 2018; Rajkomar et al., 2018; Esteva et al., 2019). The NN-based building blocks in
Section 1.1.3 can be used to transform the raw input data from different forms of EHRs
to latent representations, which would then be consumed by the downstream prediction
tasks. In the following, we will provide an overview on the applications of these building
blocks in the medical domain.
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Multilayer Perceptrons

In medical statistics, linear regression and logistic regression are two popular models thanks
to their white-box nature, where the values of the fitted coefficients can be interpreted as the
importance of respective features. MLPs have been used as their nonlinear generalizations
to further increase the predictive performance, where a sigmoid or a softmax activation
function is added to the output layer of nodes for binary classification tasks and multi-
class classification tasks, respectively. For example, Dreiseitl and Ohno-Machado (2002)
present a methodology review of various classification algorithms with an emphasis on the
comparison between logistic regression and MLPs. In the review, it is found that MLPs
show better results than logistic regression in 18% sampled studies, although there is no
significant difference between them in 42% cases and 39% cases are not considered due to
inadequate statistical testing. In addition, Kuzmanovski and Aleksovska (2003) use both
linear regression and MLPs to predict the unit cell parameters, where MLPs deliver much
better results due to the non-linearity between the input features and target variables.
In this work, MLPs serve as our default modeling choice for the learning representations
with structured data in vectorized forms (i.e., xi denotes the feature vector of the i-th data
sample). In Chapter 2 and 4, the raw input data includes both static features and dynamic
features, which differs in whether the feature has a time-stamp information. Following
Esteban et al. (2016), We use MLPs to learn latent representations from static features for
downstream tasks. For dynamic features, we use Recurrent Neural Networks to capture
the time-dependency between features in different time steps, which will be discussed in
more details in the following paragraphs.

Convolutional Neural Networks

In the medical domain, the applications of CNNs have gained the most attention and have
advanced many state-of-the-art performances. Thanks to the similarity between the tasks
using standard benchmark datasets like ImageNet (Deng et al., 2009) and the ones using
medical image data, several CNN-based models have achieved human-level performance.
Esteva et al. (2017) have trained a single CNN end-to-end using a dataset of 129, 450 clinical
images, and the model shows a level of competence comparable to dermatologists, which
facilitates the low-cost access to important diagnostic care. In radiology, Nam et al. (2019)
showed that the automatic detection algorithm based on CNNs outperforms physicians in
radiograph classification. If the algorithm is deployed as CDS to offer second opinions, the
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physician’s performance is expected to improve. With these success stories, many AI-based
medical imaging services have received approval from the Food and Drug Administration
(FDA) in the US and CE Marking in Europe (Benjamens et al., 2020). At the same
time, the high resolution nature of the medical images and the safety-critical nature of
the tasks have also in return highlighted many important aspects for future research, e.g.,
transparency, robustness, and fairness (Asan et al., 2020). In Chapter 3, we will include
these state-of-the-art CNNs as backbones in our proposed models, such as ResNet (He
et al., 2016) and DenseNet (Huang et al., 2017). Furthermore, we will enhance the model
regarding uncertainty-awareness to address problems in transparency and robustness.

Recurrent Neural Networks

RNNs have demonstrated ground-breaking performance in many sequential modeling tasks
(Lipton et al., 2015), including speech recognition, music generation, machine translation.
For advanced CDS, the sequential EHR data is a critical type of information, consisting
of recorded clinical events during each hospital visit. More specifically, the events at each
visited time step can be formulated as a feature vector xt to denote the patient status.
This formulation has a high similarity with the tasks in machine translation, where clinical
events correspond to words and hospital visits correspond to sentences. Since the number
of clinical events varies from patient to patient, the length of the resulting sequence is also
not fixed. To learn a fixed-size latent representation, the modeling advantage of RNNs
is therefore of great interest. For example, suppose we want to model the respective
treatment decision after a sequence of clinical events. In that case, we can use a many-
to-one RNN structure and take the last hidden state hTi

as the abstract covariates of the
patients, where Ti denotes the sequence length of the i-th patient. More generally, there
have been many successful applications using RNNs to model the sequential EHR data.
Esteban et al. (2016) proposed to use an RNN with a many-to-many structure to predict
the endpoints that occurred during kidney transplantation. Meanwhile, Choi et al. (2016a)
proposed RNN-based Doctor AI to predict the diagnosis and medication based on encounter
records, where the attention-based mechanism was developed in Choi et al. (2016b) to
further improve the model interpretability. Afterward, Yang et al. (2017) proposed to use
a many-to-one RNN to predict the therapy suggestions for patients who suffered from breast
cancer. Based on these works, we will propose in Chapter 2 an RNN-based framework for
learning problems in contextual bandit problems, which provides the treatment suggestions
by integrating the outcome information. Furthermore, in Chapter 4, we will combine the
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RNN-based models with sparse Gaussian Processes to equip the uncertainty-awareness in
the time-to-event predictions.

1.2 Representation Learning for Analytics in Health-
care

The analytics landscape of advanced CDS (El Morr and Ali-Hassan, 2019) consists of four
key aspects as shown in Table 1.1. All types of analytics can be instantiated and formulated
as challenging machine learning problems. In the following, we will discuss the motivations,
problem settings, related works, and contributions in respective chapters.

Contributions in this thesis

Prescriptive Analytics Learning Individualized Treatment Rules in Chapter 2.
Diagnostic Analytics Diagnostic Medical Image Analysis in Chapter 3.
Predictive Analytics Time-to-event Prediction in Chapter 4.
Descriptive Analytics Missing data imputation in Chapter 5.

Table 1.1: Types of analytics and our respective contributions.

1.2.1 Propensity Score-Based Models for Prescriptive Analytics

In prescriptive analytics, we are interested in what we should do under some new situations.
In probabilistic terms, it refers to p(a|x), the conditional probability of the treatment de-
cisions a given the covariates of a patient x. In a clinical setting, we have two different
mindsets to tackle the problems. On the one hand, we can assume that physicians al-
ways follow the clinical guidelines and give the best possible treatment decisions to the
patients. In such cases, we can have CDS to mimic the physicians’ decisions as well as
possible, which is translated into a supervised learning problem. Under such a setting, we
are essentially building a propensity score model, where the propensity score refers to the
conditional probability of assigning a specific treatment given a vector of observed covari-
ates (Rosenbaum and Rubin, 1983). Previous works such as Esteban et al. (2016); Yang
et al. (2017) have shown that RNN-based solutions can deliver much stronger performance
than traditional methods when building propensity score models. Recently, McIntosh et al.
(2021) show that ML-based solutions are even more acceptable than physicians’ original
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prescriptions in retrospective simulations, which encourages the deployment of suggestions
from AI-based CDS to offer second options. On the other hand, when no clear guidelines
are available, or some decisions must be made under time pressure, treatment decisions
from doctors can be inconsistent and prone to mistakes. Examples include decision-making
situations in the intensive care unit (ICU) environment as in Komorowski et al. (2018),
which corresponds to one of the use cases we study in this thesis. Instead of approximat-
ing the observed treatments, we are interested in studying the causal effects of different
treatment decisions, i.e., which treatment may lead to a better outcome for a patient or
what treatment strategy would result in an improved average outcome.

In causal inference, we are interested in differentiating the outcomes between different
treatments, while the fundamental problem is that we only observe one treatment and one
outcome for each patient. Formally, the problem can be formulated as studying the average
treatment effects (ATE) using the potential outcomes framework (Rubin-Neyman Causal
Model) (Rubin, 1974, 2005). Within the potential outcomes framework, the identifiabiilty
of causal effects requires some untestable assumptions including Stable Unit Treatment
Value Assumption (SUTVA), consistency, ignorability (no unmeasured confounders), and
positivity (common support). Recent NN-based works include Balancing Neural Network
(BNN) from Johansson et al. (2016) and Generative Adversarial Nets for inference of
Individualized Treatment Effects (GANITE) from Yoon et al. (2018b), where Bica et al.
(2021) offer a comprehensive overview.

Equivalently, the problem can be formulated as contextual bandits (CBs) (Langford
and Zhang, 2007), while many other names exist, such as reinforcement learning with
immediate reward (Abe et al., 2003), bandit problems with side observations (Wang et al.,
2005), bandit problems with covariates (Rigollet and Zeevi, 2010). CBs concern decision-
making processes in an environment where feedback is received only for a chosen action
under a given context (Dudík et al., 2011). In our clinical setting, the context refers
to the patient covariates, the action refers to the treatment decision, and the feedback
refers to the outcome observed from the given treatment. Instead of studying the ATE
in causal inference, the goal in CBs is to learn a new policy that leads to better expected
outcomes. The policy here is the conditional probability of the treatment decisions given
the covariates of a patient, which shares the same formulation as the one in supervised
learning. However, it is not trained in a supervised fashion but includes the outcome
information during the optimization. In precision medicine, these policies are also known
as individualized treatment rules (ITRs) (Zhou et al., 2017).
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CBs have demonstrated strong performance in many online applications, ranging from
personalized news recommendation (Li et al., 2010), advertisement placement (Bottou
et al., 2013) to Just-in-time adaptive interventions in mobile health (Nahum-Shani et al.,
2018). Meanwhile, in most observational studies, we have datasets passively collected from
clinical routines. We cannot perform any new policy directly on patients due to safety
and ethical reasons. Therefore, we follow the setting of batch learning from logged bandit
feedback (BLBF) (Swaminathan and Joachims, 2015) to tackle the problem in an offline
fashion. Existing approaches to solve BLBF problems fall under two categories. The first
approach is called Direct Method (DM), which transforms the problem into a supervised
learning problem and consists of two steps. In the first step, a supervised learning problem
is formulated to fit an outcome model, mapping the treatment decisions and patient co-
variates to outcome values. The treatment policy is derived from the outcome model in the
second step by taking the treatment corresponding to the best-estimated outcome. How-
ever, since supervised learning is optimized to predict outcomes rather than differentiate
the treatment decisions, the feature of treatment decisions may be neglected for the sake
of higher accuracy. Therefore, this approach is found not to generalize well (Beygelzimer
and Langford, 2009; Zhao et al., 2012). The situations could possibly be improved if we
take advantage of the potential outcome framework, as in the causal inference setting. The
other approach is known as Inverse Propensity Score (IPS), which casts the problem as a
policy optimization problem using the propensity score with the interaction information
like treatments and their respective outcomes. In this thesis, we develop our method using
an IPS-based approach.

Following the IPS method, Swaminathan and Joachims (2015) formulate the BLBF as
a risk minimization problem, which translates the ITRs learning into finding a new policy
πw that minimizes the risk

r(πw) = Ex∼p(x)Ea∼πw(a|x)
[
δ(x, a)

]
= Ex∼p(x)Ea∼p(a|x)

[
δ(x, a)πw(a|x)

p(a|x)

]
, (1.1)

where w denotes the parameters of the new policy. The loss δ(x, a) is an indicator func-
tion, which is 1 for negative outcome and 0 for positive outcome. The derivation in the
second line involves the importance sampling to remove the distribution mismatch between
the historical policy (physicians’ policy) from the propensity score p(a|x) and the new pol-
icy πw(a|x). From Equation 1.1, we can see that a policy having higher probability for
treatments with positive outcomes and a lower probability for treatment with negative
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outcomes will result in lower expected risk.
The Inverse Propensity Score (IPS) estimator applies Monte Carlo sampling to estimate

the expected risk in Equation 1.1 as

r̂IPS(πw) = 1
n

n∑
i=1

δi
πw(ai|xi)
p(ai|xi)

,

where δi, ai, xi denotes the observed loss, the assigned treatment, and covariates of the i-th
patient sample, respectively. However, the IPS estimator is not an ideal training objective
for mainly two reasons. Firstly, the estimator suffers from large variances, especially when
there is a large discrepancy between the new policy and the physicians’ policy (Dudík et al.,
2011). More importantly, the optimization is prone to the problem of propensity overfitting,
which means the optimized policy tends to be dominated by the physicians’ policy instead
of focusing on treatments with low risks. A toy example from a multi-class classification
task is illustrated in Figure 1.4. A good new policy should behave like case (a), which
suggests treatments with lower losses and results in an overall risk of 0. Meanwhile, due
to the propensity overfitting problem in the IPS estimator, the new policy can achieve the
same minimum risk by simply avoiding the treatment assigned by physicians as shown in
case (b). Moreover, if we translate the loss by, e.g., −1, the minimizer of the IPS estimator
will be completely different, which tends to over-present the physician’s policy.

The problem of propensity overfitting originates from the lack of equivariance of the
IPS estimator, i.e., the minimizer of the IPS estimator is dependent on the translation of
the loss. It can be reflected by the value of the treatment matching factor (TMF) defined
as

s(πw) := 1
n

n∑
i=1

πw(ai|xi)
p(ai|xi)

, (1.2)

which in expectation equals to one. The unconstrained TMF in the IPS estimator leads
to its lack of equivariance. To resolve the problems, Swaminathan and Joachims (2015)
proposed the self-normalized IPS (SNIPS) estimator by introducing the TMF as a multi-
plicative control variate

r̂SNIPS(πw) =
1
n

∑n
i=1 δi

πw(ai|xi)
p(ai|xi)

s(πw) . (1.3)

It was proven to be asymptotically unbiased and has the property of equivariance so that
the respective optimization can focus on searching for treatment decisions with low risks.
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Figure 1.4: A toy example to illustrate the propensity overfitting problem. Here, we
assume a deterministic assignment or suggestion of treatment decisions (probability being
one). Rows correspond to different patient samples, and columns correspond to treatments
decisions. For example, the first sample i = 0 has the lowest risk (loss 0) at the treatment
T1, which is also assigned by physicians (red square). Both case (a) and (b) can achieve the
theoretical minimum risk of 0, but case (b) suffers from the propensity overfitting problem.

Contributions

Standard estimators like IPS, SNIPS have been introduced with a focus on the issues found
in IPS. Meanwhile, several problems remain to be solved. First, the SNIPS estimator in
its current form in Equation 1.3 is not compatible with SGD training, which hinders its
integration with NN-based models. In addition, all these estimators assume true propensity
scores are part of the datasets, which are unavailable in most observational studies. Lastly,
due to safety considerations, we cannot apply any newly learned policy to patients before
going through rigorous evaluations. In Chapter 2, we will present a general framework to
tackle these challenges for learning optimal Individualized Treatment Rules (ITRs). The
framework consists of two parts, a predictive model and an ITR model. For the predictive
model, we will take advantage of the state-of-the-art predictive modeling of treatment
decisions (Yang et al., 2017), which is used for propensity score estimation. The ITR
model will be based on the latest BLBF formulation, BanditNet (Joachims et al., 2018),
so that the policy can be optimized using SGD. The policy will be learned by encouraging
treatments with positive outcomes and discouraging treatments with negative ones. To
validate the effectiveness of the proposed framework, we will conduct experiments both in
simulation studies and real-world use cases. In simulation studies, we have ground-truth
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values to conduct evaluation using metrics like accuracy. For the real-world datasets, we
will do evaluation with various offline methods. The encouraging experimental results will
justify the effectiveness of the proposed framework.

1.2.2 Uncertainty-Aware Models for Diagnostic and Predictive
Analytics

Although deep learning models introduced in Section 1.1.3 define many state-of-the-art
performances for diagnostic and predictive analytics in advanced CDS, most proposed
models focus on improving the point estimate performance such as accuracy. Nevertheless,
in safety-critical areas like healthcare, communicating the uncertainty of the predictions
would not hurt but rather facilitate a trustworthy relationship between AI-based models
and physicians, where a high uncertainty value indicates low confidence in the respective
prediction. From a data-centric ML perspective, the uncertainty of the predictions can
help the collection of new data samples for building better systems more efficiently. The
problem setting is similar to regression tasks, whose goal is to map the input features
to the continuous target variables. However, in our setting, we focus not only on the
point estimation of the target variables, but also want to provide respective uncertainty
estimation for each prediction.

In general, uncertainties from predictions can arise from two different reasons, where
they are correspondingly defined as aleatoric uncertainty and epistemic uncertainty. The
aleatoric uncertainty refers to the data uncertainty, which can not be reduced even when
we collect more data. Examples include intrinsic random noises in sensor measurements,
such as Gaussian noises in linear regression models. Meanwhile, epistemic uncertainty is the
model uncertainty, which can be reduced by observing more data samples. For example,
it can be modeled by assuming a probability distribution on the weights in the linear
regression models, which is also known as Bayesian linear regression. A more comprehensive
introduction can be found in Yarin (2016) and Kendall and Gal (2017). The modeling of
uncertainty has been studied as a fundamental problem in the field of probabilistic machine
learning (Ghahramani, 2015), where Gaussian Processes (GP) are one of the flexible non-
parametric models considering both model uncertainty and data uncertainty. As a non-
parametric model, GP has an infinite amount of parameters, which we have to handle
probabilistically and integrate out properly. In the following, we will introduce GP, sparse
GP and see how they can be integrated with deep learning for diagnostic and predictive
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Figure 1.5: Graphical model of a Gaussian Process for regression. Nodes are variables
where shaded ones are observed (a training dataset {xi, yi}n

i=1 with a test pair (x∗, y∗)),
and non-shaded ones are latent function values ({fi}n

i=1 for training and f∗ for testing).

analytics.
As shown in Figure 1.5, a GP is a collection of random variables, any finite number

of which have a joint zero-mean Gaussian distribution (Rasmussen and Williams, 2006).
Formally, the (latent) function values f behave according to

p(f |X) = N (f |0, Kff ),

where we denote all function values as a vector f := [f(x1), . . . , f(xn)] ∈ Rn, all input
samples xi ∈ Rp as a design matrix X ∈ Rn×p (there is a transpose operation after the
concatenation), a pre-defined covariance function k(·, ·) specifying the covariance between
pairs of input samples, and the covariance matrix

Kff := k (X, X) =


k (x1, x1) · · · k (x1, xn)

... . . . ...
k (xn, x1) · · · k (xn, xn)

 ∈ Rn×n.

In a regression problem, we have the likelihood model

p(y|f , X) = N
(
y|f , σ2

obsI
)

,

where we denote all target variables in a vector as y := [y1, . . . , yn]⊤ ∈ Rn and σ2
obs as the

variance of the observational noise in the training data.
With a GP prior over function values and a Gaussian likelihood, the marginal likelihood

p(y|X) is analytically tractable by integrating the function values f out

p(y|X) =
∫

p(y|f , X)p(f |X)df = N (y|0, Kff + σ2
obsI).
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Though GP is a non-parametric model, the hyperparameters in the kernel function
could largely influence the model performance, such as the scaling and length-scale param-
eter in a radial basis function (RBF) kernel. The hyperparameters θ can be learned by
maximizing the log marginal likelihood as

θ∗ = arg max
θ

log p(y | X, θ) = arg max
θ

log N
(
y | 0, Kff + σ2

obsI
)

.

With the optimized hyperparameters θ∗, GP provides a predictive distribution for a test
sample x∗ as

p(f∗|x∗, y, X, θ∗) = N
(

f∗|k⊤
f∗

(
Kff + σ2

obsI
)−1

y, k∗∗ − k⊤
f∗

(
Kff + σ2

obsI
)−1

kf∗

)
,

where k∗∗ = k (x∗, x∗) ∈ R, kf∗ = k (X, x∗) ∈ Rn. In probabilistic terms, the predictive
distribution above can be derived by conditioning a joint GP prior on the noisy observa-
tions, where we have the joint GP prior as

p (f , f∗|X, x∗) = N

 f

f∗

∣∣∣∣∣∣0,

 Kff k∗f

kf∗ k∗∗

 . (1.4)

However, the O(n2) storage complexity and O(n3) computational complexity from the
inverse operation of the covariance matrix Kff hinder the application of GPs to large-
scale datasets. Many approximation methods have been proposed to solve the scalability
issue in exact GPs. Generally speaking, the approximation can be categorized into the
prior approximation and the posterior approximation with inducing points. Following
Quinonero-Candela and Rasmussen (2005), we define inducing points as inducing inputs
and inducing variables, {zi, ui}m

i=1 =: Z, u, corresponding to the inputs and (latent) func-
tion values in the original dataset, {xi, fi}n

i=1 =: X, f , where the number of inducing
points, m, is pre-defined and m ≪ n.

Under the prior approximation, Williams and Seeger (2000) propose the Nyström ap-
proximation, one influential solution based on using a subset of the original dataset to
constitute the covariance matrix. The covariance matrix is assumed to have a low rank
and approximated by the inducing points as

Kff ≈ Qff = KfuK−1
uuKuf ,

where Kfu = k(X, Z) ∈ Rn×m, Kuu = k(Z, Z) ∈ Rm×m. More generally, we denote
Qab := KauK−1

uuKub as the approximated covariance matrix using the inducing points. In
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Figure 1.6: Graphical model of the Nyström approximation. Nodes with red circles are
(randomly) selected samples to approximate the original covariance matrix.

comparison to Equation 1.4, the joint prior is approximated by

qNyström (f , f∗) = N

 f

f∗

∣∣∣∣∣∣0,

 Qff k∗f

kf∗ k∗∗

 , (1.5)

where from now on we drop the explicit conditioning on (inducing) inputs to simplify the
notation.

As shown in Figure 1.6, the inducing points in the Nyström approximation refer to
a subset of the dataset, which can be selected, e.g., randomly or through clustering al-
gorithms like K-means. It equals an exact GP when the whole dataset is treated as the
inducing points. The Woodbury formula further speeds up the inversion operation related
to the covariance matrix, and the final computational cost is reduced to O(nm2). Never-
theless, the Nyström approximation can not be viewed as a well-formed probabilistic model
due to the inconsistency of Qff and kf∗ in Equation 1.5. The problem is later fixed by
Deterministic Training Conditional (DTC) approximation from Seeger et al. (2003).

Following the idea of approximating the generative model with the exact inference,
Snelson and Ghahramani (2005) propose Sparse Pseudo-input Gaussian Processes (SPGP),
which is later known as the Fully Independent Training Conditional (FITC) Approxima-
tion. Unlike the Nyström approximation, the inducing points are trainable parameters
learned by gradient-based optimization to better represent the dataset. Furthermore, as
shown in Figure 1.7, the function values f are assumed to be conditionally independent
given the inducing variables u, which reflects the naming of FITC.

The joint prior of FITC takes the form

qFITC (f , f∗) = N

 f

f∗

∣∣∣∣∣∣0,

 Qff + diag(Kff − Qff ) q∗f

qf∗ k∗∗

 , (1.6)
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Figure 1.7: Graphical model of the Fully Independent Training Conditional Approximation.
Nodes with red circles are trainable inducing points.

where qf∗ denotes KfuK−1
uuku∗ by following the definition of Qab. From the expression,

we can see FITC replaces the prior covariance with the respective approximation at all
locations except the values on the diagonal. This derivation of training objective and
predictive distribution follows a similar procedure in exact GPs by replacing the covariance
matrix with the cheaper approximation in Equation 1.6. With some other matrix inversion
tricks, the computational complexity remains to be O(nm2).

However, with a large amount of trainable inducing points in the generative model,
the training of FITC is prone to overfitting problems. To better approximate exact GPs,
Titsias (2009) propose the Variational Free Energy (VFE) to approximate the GP posterior
using inducing points. Due to the consistency of GPs, the true data and the inducing points
are jointly Gaussian

p(f , u) = N

 f

u

∣∣∣∣∣∣0,

 Kff Kfu

Kuf Kuu

 .

The posterior in an exact GP, p(f , u|y) = p(f |u, y)p(u|y), is approximated by the vari-
ational distribution, q(f , u) = p(f |u)q(u). The approximation encourages u to be a suf-
ficient statistic, since u would represent the data well if we can have p(f |u) ≈ p(f |u, y).
The learning of the inducing points involves minimizing the Kullback–Leibler (KL) di-
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vergence, KL[q(f , u)∥p(f , u|y)], or equivalently2 maximizing the Evidence Lower Bound
(ELBO) of the log marginal likelihood

log p(y|θ, Z, q(u)) = log
∫∫

p(y, f, u)dfdu

= log
∫∫ q(f , u)

q(f , u)p(y, f, u)dfdu

(i)
≥
∫∫

q(f , u) log p(y, f, u)
q(f , u) dfdu

(ii)=
∫∫

p(f |u)q(u) log p(y | f)����p(f |u)p(u)
����p(f |u)q(u) dfdu

=
∫

q(u)
[∫

p(f | u) log p(y | f)df + log p(u)
q(u)

]
du := J (θ, Z, q(u))

where (i) follows the Jensen’s inequality and (ii) involves the substitution of the variational
distribution. To tighten the bound, we can maximize over the variational distribution
q(u), where the optimal choice q∗(u) can be analytically solved and has a Gaussian form.
Inserting q∗(u) back in the ELBO results in a final bound Jq∗(u)(θ, Z), whose parameters
are to be learned with gradient based methods like in FITC. The predictive distribution
for a new sample can be computed from the variational distribution as

p (f∗ | y) = q (f∗) =
∫∫

p (f∗ | f , u) q(f , u)dfdu

=
∫∫

p (f∗ | f , u) p(f | u)q(u)dfdu

=
∫

p (f∗ | u) q(u)du,

where the last line involves the GP consistency as
∫

p (f∗ | f , u) p(f | u)df = p(f∗ | u).
Unlike FITC, increasing the number of inducing points would not cause any overfit-

ting problem but only improve the approximation to an exact GP. Meanwhile, like other
variational methods, VFE is even prone to underfit the dataset. In practice, VFE offers
better mean estimates, while FITC returns better variance predictions (Bauer et al., 2016).
From a DL’s perspective, the predictive variance and training objective are the most im-
portant parts of the respective GP models, corresponding to the forward and backward
propagation. Therefore, we summarize them in Table 1.2.
2 ∫∫

q(f , u) log p(y, f, u)
q(f , u) dfdu =

∫∫
q(f , u) log p(f, u|y)p(y)

q(f , u) dfdu = p(y) − KL
[
q(f, u)||p(f, u|y)

]
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Figure 1.8: Graphical model of the Scalable Variational Gaussian Process.

As shown in Table 1.2, the training and inference of sparse GPs still involve loading
the complete training dataset in the memory for the computation of matrices like Qff . It
remains to be unsatisfactory for large datasets due to the quadratic storage complexity.
For example, large image datasets can easily exceed the memory-size limit in standard
computers. Moreover, the training of neural networks is usually done in mini-batches. As
a solution, Hensman et al. (2013) propose Scalable Variational Gaussian Process (SVGP),
which reduces the space and computational complexity to O(m2) and O(m3) respectively.
As discussed above, the optimal variational distribution in VFE, q∗(u), has the form of a
Gaussian and the computation of its mean and variance has a dependency on the whole
dataset. SVGP drops this dependency by assuming q(u) to be a Gaussian distribution,
N (u|m, S), with trainable mean and variance. Bad values of m and S would only result
in poor variational approximation, but approximation assumptions in SVGP remain un-
changed compared to VFE. Consequently, the bound is shown to have a data likelihood
term, which can be factorized across samples. As shown in Figure 1.8, SVGP turns to be
a fully parametric model of the inducing points u and hyperparameters θ, which enables
the training using methods like stochastic gradient descent (SGD).

As a variant of VFE, SVGP inherits nice properties like good mean estimates. Mean-
while, bad properties like over-estimated observational noise σ2

obs in VFE also occur in
SVGP. Jankowiak et al. (2020) pointed out that most predictive variance in SVGP is ex-
plained by input-independent observational noise and proposed the Parametric Predictive
Gaussian Process (PPGP) to improve the predictive variance.
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Contributions

To this end, we have introduced exact GP, sparse GPs (FITC, VFE), and SVGPs (SVGP,
PPGP). The question of how to combine them with NNs has to be further discussed. In
addition, the evaluation of the predictive uncertainty remains to be open. In Chapter 3, we
will present a novel deep kernel learning model for regression on medical images, which al-
lows the estimation of uncertainty through a pipeline of state-of-the-art CNNs and SVGPs.
The proposed model will be enhanced by introducing various pre-training technologies in
representation learning, which we found crucial for the initialization of inducing points in
SVGPs. We will show a novel plot, Quantile Performance (QP) plot, to visualize the intu-
ition of uncertainty-awareness: The more confident a model is of its predictions, the more
accurate these predictions should be. Through experiments on both univariate and multi-
variate regression tasks, we will validate the good performance and uncertainty-awareness
of our proposed model. In Chapter 4, we will further develop the deep kernel model in
the context of time-to-event prediction. Following the idea of a trainable feature extractor
with an uncertainty-aware predictive model, we will feed sequential EHRs as input data to
the RNN-based feature extractors. The latent representations will be consumed by SVGPs
as abstract covariates of the patients. The positive skewness and right-censoring of the
time-to-event target variable will be handled by generalizing the linear accelerated failure
time models to non-linear SVGP-based models. Experiments conducted on two real-world
datasets will show the improved performance of our proposed model compared to common
architectures without the loss of scalability. The uncertainty estimates in the proposed
model will presumably help establish a trustworthy relationship with physicians since it
can express higher confidence in more accurate predictions and vice versa.

1.2.3 GAN-Based Models for Descriptive Analytics

Descriptive analytics can provide evidence for subsequent decision-making processes. Due
to the vast amount of workloads in hospitals, missing data is a common yet critical prob-
lem in existing EHRs. However, many machine learning models require complete patient
vectors as inputs. The ultimate solution would be to enhance the EHR data quality itself
through improved data collection processes. Meanwhile, from an algorithmic perspective,
the problem can be tackled by imputation methods to estimate missing values based on
observed ones. The problem setting is as follows, given a dataset having incomplete patient
features, we would like to impute the missing features based on observed ones, so that the
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Figure 1.9: Illustration of the architecture of Generative Adversarial Networks.

downstream predictive models can benefit from the completeness of the patient features.
In this thesis, we focus on a novel imputation approach based on Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014).

GANs are first proposed to capture the data distribution of high-dimensional data
like images. In the framework of GANs, there is a generative model (generator) and a
discriminative model (discriminator). The discriminator estimates the probability that the
input comes from the training data rather than the generator, while the generator tries
to fool the discriminator by outputting more realistic samples. In other words, the two
models are trained in an adversarial process. The whole learning process can be trained
using backpropagation if we involve neural networks for the generator and discriminator.

Figure 1.9 illustrates the architecture of GANs. Formally, we denote the input of the
generator as z, which is sampled from a pre-defined distribution pz(z), e.g., a standard
normal distribution. The output of the generator is denoted as G(z). Together with
samples from the training dataset x ∼ pdata(x), G(z) is fed as input to the discriminator.
The output of the discriminator D(·) is the probability that the sample comes from the
training data. To correctly classify the samples from real to generated, it is trained by
maximizing the log-likelihood of Bernoulli distributions as

JD(ΘD) = Ex∼pdata

[
log D(x)

]
+ Ez∼pz(z)

[
log

(
1 − D(G(z))

)]
, (1.7)

where we denote all trainable parameters in the discriminator as ΘD.
Meanwhile, the generator is trained to fool the discriminator by minimizing the same

objective as
JG(ΘG) = Ez∼pz(z)

[
log

(
1 − D(G(z))

)]
, (1.8)
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Figure 1.10: Comparison of two different loss functions for the generator. As the value of
0 is undefined for the log function, 10−5 is used as an approximation.

where we denote all trainable parameters in the generator as ΘG. Note that the first term
in Equation 1.7 is dropped as it doesn’t depend on the parameters from the generator.

Training models by objectives in Equation 1.7 and Equation 1.8 constitutes a zero-
sum or minimax game concerning the same value function, which is proven to recover
minimizing the Jensen-Shannon divergence between the data and the model distribution.
However, the training objective in Equation 1.8 cannot provide sufficiently large gradient
for the generator to learn well. Since the discriminator is trained in a supervised learning
manner, it can be trained efficiently to reject generated samples confidently, especially
at the beginning of the training. As shown in Figure 1.10, with a strong discriminator
predicting 0s for the generated samples, the values of log(1 − x) approaches 0, i.e., the
gradient of the generator vanishes. As a fix, the non-saturating loss is proposed for the
generator as

JG(ΘG) = −Ez∼pz(z)
[

log D(G(z))
]
, (1.9)

which can be interpreted as maximizing the probability that the discriminator makes wrong
predictions. As in Figure 1.10, the non-saturating loss offers much larger gradients in
regions near x = 0, which corresponds to a strong discriminator. After the initial GANs
paper, numerous variants of the generator loss function have been proposed. Nevertheless,
it was found that the original non-saturating loss could achieve similar results to most of
them, given enough hyperparameter optimization and random restarts (Lucic et al., 2018).
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Contributions

There are still several obstacles to overcome when we apply GANs to data imputation
problems. More specifically, the outputs from the generator are complete feature vectors,
which is hard to be used to impute only part of the feature vectors. In addition, one
requirement on the generator is that it has to be differentiable so that the gradients from
the discriminator can be backpropagated to the generator. Such a requirement makes it
hard to generate categorical features due to their discrete nature. In Chapter 5, we will
present our solution based on a GANs-based variant for missing data imputation, Genera-
tive Adversarial Imputation Nets (GAINs) (Yoon et al., 2018a). We will show that, even if
we relax the discrete constraints of categorical variables to enable the backpropagation in
GAIN, the training of the generator could still fail. The reason is that a perfect discrimina-
tor can be easily achieved by exploiting the apparent difference between the generated data
being continuous and the true data being binary. To solve this problem, we will propose
a novel way to re-code the categorical features to stabilize the adversarial training based
on the GAINs, where we name our proposed models as categorical GAINs. By encoding
binary values to continuous values between 0 and 1 with the categorical information be-
ing retained, we avoid the “cheating” of the discriminator. In addition, we will propose
multiple modifications in GAINs architecture to serve the categorical features and the pro-
posed re-coding method better. The largely improved predictive accuracy will validate the
effectiveness of the proposed imputation method.
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Propensity Score-Based Models in
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Abstract—Randomized controlled trials typically analyze the
effectiveness of treatments with the goal of making treatment
recommendations for patient subgroups. With the advance of
electronic health records, a great variety of data has been
collected in clinical practice, enabling the evaluation of treatments
and treatment policies based on observational data. In this paper,
we focus on learning individualized treatment rules (ITRs) to
derive a treatment policy that is expected to generate a better
outcome for an individual patient. In our framework, we cast
ITRs learning as a contextual bandit problem and minimize the
expected risk of the treatment policy. We conduct experiments
with the proposed framework both in a simulation study and
based on a real-world dataset. In the latter case, we apply our
proposed method to learn the optimal ITRs for the administration
of intravenous (IV) fluids and vasopressors (VP). Based on
various offline evaluation methods, we could show that the policy
derived in our framework demonstrates better performance
compared to both the physicians and other baselines, including a
simple treatment prediction approach. As a long-term goal, our
derived policy might eventually lead to better clinical guidelines
for the administration of IV and VP.

Index Terms—individualized treatment rules, contextual ban-
dit problem, off-policy learning

I. INTRODUCTION

Since the introduction of electronic health records (EHRs),
machine learning has increasingly been used to analyze obser-
vational clinical data with the goal of individualizing patient
care [1]. Compared to traditional rule-based strategies, where
all patients with a specific disease in a particular patient group
receive similar treatments, the goal of modern personalized
medicine is to offer better care to individual patients, taking
into account their heterogeneous characteristics. Personalized
medicine might be especially important for situations where
high-dimensional longitudinal data needs to be analyzed under
time pressure, as in an emergency room (ER) or an intensive
care unit (ICU). Here, treatment decisions might have to be
made without the best medical expert for the case being readily
available.

In personalized medicine, individualized treatment rules
(ITRs) assign a treatment from a range of possible treatments
to an individual patient based on his or her clinical characteris-
tics [2]. Ideally, all patients would have positive outcomes after
receiving the treatments suggested by the optimal ITRs. In
practice, one is interested in the ITRs’ best mean performance.
However, the evaluation of ITRs remains challenging, as it
is unethical or even dangerous to apply newly learned rules
directly to patients. Offline evaluation is the most widely used

approach for such tasks. When learning the optimal ITRs,
it is implicitly assumed that individualization can lead to
better outcomes compared to current guidelines. In clinical
practice, physicians might already perform some form of in-
dividualization by taking into account patient attributes that are
not considered in the guidelines. In predictive modeling, one
attempts to directly copy the physicians’ decision processes
by using machine learning [3], which serves as one of our
baseline methods.

Recently, many researchers have built powerful machine
learning models to predict the physicians’ treatment decisions
with neural networks [4]–[6]. In particular, recurrent neural
networks (and their advanced variants) are the de facto choice
when dealing with sequential EHRs. In this paper, we show
that recurrent neural networks are also suitable for learning the
optimal ITRs within the proposed framework shown in Fig. 1.

Patient
Information Outcome

Predictive Modeling
of Treatment Decisions

ITRs Model
Estimated

Propensity 
Score

Positive Negative

Treatment
Suggestion

Treatment
Prescription

etIPS

Fig. 1. etIPS for learning the optimal ITRs: Both the predictive model
(left) and the ITRs model (right) generate treatment suggestions based on
available patient information. The predictive model is trained to mimic the
physicians’ decisions as well as possible. If the predictive model is trained
to output probabilistic scores, it essentially estimates propensity scores. The
ITRs are trained by encouraging treatments with a positive outcome as well
as discouraging treatments with a negative outcome.

From a machine learning perspective, the task of learning
optimal ITRs can be formulated as treatment policy opti-
mization based on the observed treatments and their received
outcomes for individual patients. Such formulation is closely
related to the contextual bandit problem, which concerns



decision making in an environment where feedback is received
only for a chosen action under a specific context. The chal-
lenge lies in the fact that only the feedback of an assigned
action is observed, while the feedback of other actions remains
unknown. Most work on the contextual bandit problem in
machine learning concerns online services like content recom-
mendations, where the context is a user’s profile of interests
in different topics, the action is the recommended item, and
the feedback is the click action for the recommended item [7].
Online systems also record the model’s assigned probability
for each recommended item, which plays an essential role
in learning a better policy. In the setup of clinical trials,
the context can be viewed as the health level and treatment
history of patients, the action refers to the treatment decision,
and the feedback is the outcome observed after that specific
treatment. The probability of assigning a particular treatment
to the patient based on his or her covariates is known as
the propensity score [8]. In randomized clinical trials, the
propensity score is usually predefined for the experiments
(e.g., 50% for binary randomized clinical trials). However,
in observational studies, the propensity score can only be
estimated since it is implicit in the observed medical decisions.
Many previous studies focus on the learning of ITRs with the
predefined propensity scores [2], [9], [10].

Our contribution in this manuscript is threefold:
1) Inspired by previous works in predictive modeling of

treatment decisions and contextual bandit problems, we
present a general framework, etIPS, for learning ITRs
based on sequential EHRs from observational studies by
estimating the underlying true propensity score.

2) With experiments on two simulated sequential classifi-
cation tasks, we empirically verify that the estimated
propensity score can replace the true propensity score for
learning a better policy in contextual bandit problems.

3) We apply the proposed framework to the MIMIC-III
dataset [11] to learn the optimal ITRs for the adminis-
tration of intravenous (IV) fluids and vasopressors (VP).
In various offline evaluations, the ITRs derived from our
proposed method show better performance when com-
pared to the physicians’ decisions and other baselines.

II. RELATED WORK

Predictive modeling with sequential EHRs: Recurrent
neural networks (RNNs) have achieved great success on tasks
such as machine translation in natural language processing
[12]–[16]. In machine translation, sentences are composed of
variable number of words, just as EHRs consist of medical
events of variable length. Esteban et al. have applied the
sequence-to-sequence structure [17] to predict clinical events
of patients suffering from kidney failure [5]. In their work,
the static EHRs are integrated into the network to achieve
better performance. Meanwhile, Choi et al. propose Doctor
AI to predict diagnosis and medication prescriptions simul-
taneously [3]. Furthermore, Choi et al. augment the network
with attention mechanisms to improve both the accuracy and
model interpretability [18]. More recently, Yang et al. have

proposed to apply the many-to-one structure to predict the
therapy decision for breast cancer [6], which only outputs one
prediction for a sequence of events. However, predictive mod-
eling is solely trained to mimic treatment decisions without
taking into account the outcome information.

Learning Individualized Treatment Rules (ITRs): The
learning of ITRs has attracted much attention in medical
research. To get the best average outcome, Qian et al. propose
a two-step method [9]. First, an outcome prediction model
is fitted with the patient information and treatments. Second,
ITRs are derived by selecting the treatment that promises to
lead to the best outcome according to the trained model. This
approach relies heavily on the correctness of the outcome
prediction model. In comparison, Zhao et al. propose the
framework of outcome weighted learning (OWL) to construct
a model that directly optimizes the outcome without learning
an explicit outcome model [10]. In OWL, the learning of
ITRs is formulated as a weighted classification problem and
is solved by support vector machines. More recently, Zhou
et al. have proposed the residual weighted learning (RWL) to
improve the robustness of the ITRs learned by OWL [2]. A
separate regression model is fitted to estimate the baseline to
compute the residual from the outcome. The discussed frame-
works mainly focus on linear models and linear classifiers.

Learning the administration of IV and VP: Komorowski
et al. propose a reinforcement learning agent to learn the
optimal strategies for sepsis management [19]. A k-means
algorithm is used to infer the states of the patients, 25 actions
are defined by discretizing the dosage of IV and VP, and the
mortality is used to define the long-term reward. The optimal
policy is derived by solving a Markov decision process with
policy iteration. However, mortality is a sparse and noisy long-
term reward for both learning and evaluation. In this paper,
we have a similar problem setting, but take advantage of an
immediate reward to learn and evaluate the optimal ITRs.

Batch learning from bandit feedback (BLBF): Bandit
learning is commonly applied in online recommendation sys-
tems, where algorithms are evolving by trial and error with
real-time feedback from users. In medical applications, it is
more common to train algorithms offline, mostly for safety
considerations. Batch learning from bandit feedback is one of
the offline versions of the contextual bandit problem, where the
algorithm is trained with a batch of bandit feedback without
online interactions [20]. Under the BLBF setting, the two-
step method of deriving an optimal decision by maximiz-
ing the best estimated outcome proposed by Qian et al. is
called the Direct Method (DM), whereas the approaches to
optimize weighted outcomes directly proposed by Zhao et
al. are known as Inverse Propensity Score (IPS) methods
[7]. Swaminathan et al. cast BLBF as a counterfactual risk
minimization problem. They propose the Policy Optimizer for
Exponential Models (POEM) to improve the robustness of IPS
methods [21]. Besides, Swaminathan et al. propose to use the
self-normalized estimator for counterfactual learning (Norm-
POEM) to alleviate the propensity score overfitting problem
[22]. Both POEM and Norm-POEM are only applicable to



linear models. More recently, Joachim et al. have proposed
to reformulate the self-normalized estimator to train neural
networks with bandit feedback [23]. However, all the proposed
methods assume that the true propensity score is known.

III. COHORT

In this section, we describe how we define the cohort and
process the data to be used in our proposed framework.

A. Cohort Selection

The Medical Information Mart for Intensive Care database
(MIMIC-III) is a freely accessible database, which contains
data including 53, 423 Intensive Care Unit (ICU) admissions
of adult patients between 2001 and 2012 [11]. In this paper, we
consider a cohort of patients from MIMIC-III v1.4, who fulfill
the Sepsis-3 criteria [24]. We follow the scripts1 provided by
Komorowski et al. [19] to recreate the cohort. In short, the
inclusion criteria select those adult patients who are associated
with a Sequential Organ Failure Assessment (SOFA) score of
2 or more during the time of interest. The SOFA score ranges
from 0 to 24, and a higher value indicates a more severe status
of the patient. Further, patients with extreme unusual records
or death during the data collection period are excluded from
the cohort, as their records would have led to spurious policies.
In total, 20, 944 admissions are included in our dataset.

B. Data Description and Processing

Static and sequential information: There are two classes
of variables that are relevant for modeling the treatment deci-
sions: 1) static information, e.g., age and gender; 2) sequential
information, e.g., time-varying heart rate and respiratory rate.
Similar to Komorowski et al. [19], we extract a set of 47
variables, including information about demographics, vital
signs, and lab values. Three of those variables are about static
information and 44 are about sequential information. More
details about the variables can be found in Appendix A. The
time of interest is defined as 24 hours before the onset of the
sepsis and 48 hours after it. To represent the sequential status
of the patient, we aggregate the data by averaging over four-
hour windows. As a result, at each time-step, each admission
is represented by a multidimensional vector.

Treatments and outcome: We choose to learn the optimal
ITRs for the administration of IV and VP, considering the
suboptimality of their administration reported in the clinical
literature [25]. More specifically, we follow the scripts from
Komorowski et al. and define 25 treatment decisions for
each four-hour time window, where each decision is an IV-
VP pair for discretized dosages. The original dosage is first
converted to zero (i.e., zero dosage) and non-zero classes, and
the non-zero classes are further divided into quartiles. More
statistics of the discretized treatment decisions can be found
in Appendix B.

In the bandit problem, each action immediately receives
feedback information. Therefore, we compute a clinically
guided outcome, denoted by ∆-SOFA (differences between

1https://github.com/matthieukomorowski/AI Clinician

subsequent SOFA scores), as our feedback information to
guide the learning of the ITRs. As concluded by Vincent et al.
[26], the ∆-SOFA offers an objective evaluation of treatment
responses and could be used to reflect patients’ responses
to therapeutic strategies. Furthermore, if a patient has an
unchanged SOFA score in a low range or a decreased SOFA
score in subsequent time windows, he/she is associated with a
lower mortality rate. Similar applications of the ∆-SOFA have
been reported by Raghu et al. [27]. In BLBF, the problem is
cast as a risk minimization problem. Thus, we define the loss
as 0 (positive outcome) if ∆-SOFA is unchanged in a low
SOFA range (0-5) or has decreased. Otherwise, we set the
loss as 1 (negative outcome).

Training and test sample generation: To model the treat-
ment decision, we extract samples from the patients’ medical
history in an expanding window fashion, whenever a treatment
is observed. For predictive modeling, the treatment decision
is viewed as the target variable for training. All sequential
information before the treatment is used as covariates for
prediction. The sequential information at the time-step of the
treatment is not used for learning, as some variables may not
be observed at the time of decision in the ICU. For ITRs
learning, the outcome for the treatment decision is required.
Therefore, we extract the observed ∆-SOFA in the next time-
step and compute the corresponding loss as described in
the previous paragraph. As shown in Fig. 2, each sample
consists of the sequential information, treatment decision, and
the corresponding loss information. In addition, the static
information is also extracted but not shown in the figure for
the sake of simplicity.

�<�+1>

�

time

�<0>

1
�<0>
1

�<1>
1

�<�>

�
�<�>

�

Sequential info.  �seq

... ...

time

... ...

...

4h 4h

... ...

4h 4h time

Treatment �

Loss �

Fig. 2. Illustration of the training and test sample generation from the medical
history of each admission: The left-hand side presents the raw data after
aggregating for every four-hour time window; the right-hand side shows the
generated training and test samples. A sample will be extracted if the following
two conditions are fulfilled: 1) A treatment decision is observed at a certain
time-step. 2) The feedback information is observed in the following time-
step of the treatment. To highlight the relative order between the sequential
information, treatment, and the corresponding loss, we add the superscript
< t > to indicate the time-step index of the treatment during the admission.

From 20, 944 admissions we could extract in total 224, 333
samples (i.e., 10.7 samples per admission on average). The
number of time-steps observed before the treatment varies
from 1 to 18 and is on average 7.2. When generating the



training samples and test samples, the split is based on the
admission level rather than the sample level so that we can
achieve a more objective evaluation. With the split admissions,
the samples are divided for training and testing accordingly.

IV. METHOD

Our proposed framework consists of two consecutive
parts: a predictive model for the propensity score estima-
tion and an ITRs model trained with an objective function
based on the estimated propensity score. After following
the preprocessing steps in Fig. 2, we denote our data as
{(Xseq)i, (xsta)i, ai, δi}mi=1, where Xseq ∈ RT×44 represents
the (multivariate) random variable for the sequential informa-
tion with T observed time-steps and xsta ∈ R3 stands for
the static information. We denote the treatment decision as
a ∈ {1, 2, . . . , 25} =: A and the loss of the observed treatment
as δ ∈ {0, 1}. Scalars are denoted by lowercase letters such as
a, δ; (column) vectors are denoted by bold lowercase letters
such as xsta; matrices are denoted by uppercase letters such
as Xseq; sets are denoted by calligraphic letters such as A.

A. Propensity Score-Based Objective Function for Learning
ITRs

Following the formulation in BLBF, the goal of learning the
optimal ITRs is to find a policy πw that minimizes the risk

r(πw) = EX∼P(X)Ea∼πw(a|X)

[
δ(X, a)

]

= EX∼P(X)Ea∼P(a|X)

[
δ(X, a) · πw(a|X)

P(a|X)

]
(1)

where w denotes the parameters of the policy. The loss δ(X, a)
is an indicator function, which is 1 for negative outcome and
0 for positive outcome. The propensity score is reflected in the
conditional probability P(a|X) for different treatments a ∈ A.
For conciseness, we use X to denote the random variable
for the complete medical history, including the sequential
information Xseq and the static information xsta, though it is
a slight abuse of notation..

Equation (1) is derived by applying importance sampling
to remove the distribution mismatch between the physicians’
policy and the new policy πw . Intuitively, the new policy πw
will have a lower expected risk r(πw) when it has a higher
probability for treatments with positive outcomes and a lower
probability for treatments with negative outcomes.

The Inverse Propensity Score (IPS) estimator

r̂IPS(πw) =
1

m

m∑

i=1

δi
πw(ai|Xi)

P(ai|Xi)
(2)

applies Monte Carlo sampling to estimate the expected risk
in (1) by taking the observed data points as samples. The
IPS estimator will be unbiased if P(ai|Xi) describes the
physicians’ policy. Therefore, it is appealing to use the risk
defined by the IPS estimator (IPS risk) as the objective
function to learn the optimal ITRs.

However, there are mainly two reasons why it is not possible
to optimize the policy using the IPS risk directly. First, it has
been shown that the IPS estimator suffers from large variance

if there is a large discrepancy between the new policy and the
physicians’ policy [7], which would be more severe for high-
capacity models like neural networks, as it is in our case.
Second, directly minimizing an IPS estimator that contains
the propensity score is prone to propensity score overfitting
[22]. More specifically, the new policy is dominated by the
physicians’ policy rather than the treatment with low loss.
In our setting, the minimal IPS risk in (2) is 0. The new
policy will simply put zero probability on all the treatment
decisions observed from the physicians. In other words, the
new policy achieves minimal IPS risk by recommending any
treatment that differs from the physicians’ decision. In Sec. V,
this phenomenon will also be empirically verified.

Propensity score overfitting originates from the lack of
equivariance of the IPS estimator (see Appendix D), i.e., the
minimizer of the IPS risk is dependent on the translation of
the loss. Furthermore, the lack of equivariance is due to the
unconstrained treatment matching factor (TMF), defined as

s(πw) :=
1

m

m∑

i=1

πw(ai|Xi)

P(ai|Xi)
(3)

which equals to 1 in expectation (see Appendix C), but will be
far from 1 if the propensity score overfitting problem occurs.

As a solution, the self-normalized IPS estimator (SNIPS)

r̂SNIPS(πw) =

1
m

∑m
i=1 δi

πw(ai|Xi)
P(ai|Xi)

s(πw)
(4)

is proposed to replace the IPS estimator for the learning of a
new policy [22]. It is proven to be asymptotically unbiased [28]
and has the property of equivariance (see Appendix E), which
enables the new policy to focus on learning the treatment with
low loss.

Neural networks are typically trained by mini-batch stochas-
tic gradient descent. Unfortunately, the optimization problem,
including the SNIPS estimator, cannot be solved directly by
a mini-batch stochastic gradient descent-based method, since
all samples are required to compute the denominator. A mini-
batch of samples could be used to estimate it, but the result is
proven to be biased [23]. Joachim et al. propose the BanditNet
by reformulating the SNIPS estimator with an additional
constraint [23]. In short, optimizing the SNIPS estimator is
equivalent to optimizing a λ-translated IPS estimator

r̂λIPS(πw) =
1

m

m∑

i=1

(δi − λ)
πwj

(ai|Xi)

P(ai|Xi)
(5)

where the Lagrange multiplier λ is called the translation (more
details in Appendix F). The optimal translation λ is found
through grid search. As mentioned earlier, a translation of
the loss results in a difference among the minimizers of the
IPS risk: On the one hand, the new policy tends to avoid
the treatments in the physicians’ policy if losses are defined
as non-negative values; on the other hand, it prefers to over-
present the physicians’ policy if losses are defined as non-
positive values. Taking advantage of the lack of equivariance
of the IPS estimator, the reformulation searches the optimal



translation to balance these two tendencies so that the policy
can focus on learning the treatment with low loss.

B. Predictive Modeling of Treatment Decisions

In observational studies, the propensity score is not known
but can be estimated from the collected data. More specifi-
cally, the propensity score can be modeled by any supervised
machine learning models that provide probability estimates for
the various treatment decisions. We propose to apply state-of-
the-art predictive models to produce an estimated propensity
score P̂(a = ai|X), which is necessary for the optimization
problem in (5).

Recurrent neural networks (RNNs) provide an extension
of feedforward neural networks to handle sequential inputs.
Formally, given an input sequence (x1,x2, . . . ,xT ), an RNN
calculates the hidden states ht at time-step t iteratively by
joining the current input at t and the previous hidden state at
t− 1 as

ht = g(Wxt + Uht−1) (6)

where g(·) is a non-linear activation function and W and U are
parametric weight matrices. Since each hidden state is again
dependent on its predecessor, the state at t is theoretically
capable of storing all relevant information of the entire history.
Downstream models for classification or regression tasks could
be implemented to consume the hidden state ht as their input.
However, the classical RNN architecture as in (6) often suffers
from the vanishing gradient problem [29], [30] and therefore
could fail to capture the long-term dependencies from the
previous inputs. More advanced variants of RNNs, such as
gated recurrent unit (GRU) [31] or long short-term memory
(LSTM) [30], have been proposed to solve the problem with
gating mechanisms and have achieved great successes in
modeling sequential data with long-term dependencies, such
as texts or sensory data [32].

In the case of predictive modeling of treatment decisions,
the multidimensional vector xt at different time-steps consti-
tutes the sequential input data Xseq. GRU/LSTM is used to
encode Xseq into the hidden states ht. Since we are mainly
interested in modeling treatment decisions, a many-to-one
structure is used [6], i.e., only the representation of the last
hidden state hT is utilized as the input for the treatment
prediction, where T is the number of observed time-steps
before the treatment. Formally, we have

GRU/LSTM : RT×44 → Rh

Xseq 7→ hT

where h is the dimension of the hidden state and will be tuned
as a hyperparameter in the experiments. The static information
is concatenated with the hidden state encoded by GRU/LSTM
so that the static information is included for the modeling of
the treatment decisions [5]. Formally, we have

z = (hT ,xsta).

The resulting vector z ∈ Rh+3 represents the patient’s com-
plete medical history in a latent vector space and facilitates

different subsequent tasks. In our case, a softmax classifier is
built on top of it for the treatment prediction, as illustrated
in Fig. 3. In our framework, we interpret the probability
distribution produced by this model as an estimate of the true
propensity score.
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Fig. 3. Illustration of the predictive modeling of treatment decisions with static
and sequential information: GRU/LSTM encodes the sequential information
into hidden states. The last hidden state is concatenated with the static
information, resulting in a vector to represent the patient’s complete medical
history. On top of it, a softmax classifier is built to predict the treatment
decisions of physicians.

C. Estimated Translated Inverse Propensity Score

In this section, we elaborate the entire etIPS framework in
Algorithm 1 by inversely joining the modules that have been
introduced in Sec. IV-A and IV-B.

In line 1, we train the predictive model as in Sec. IV-B
to estimate the physicians’ policy. In line 2, we derive the
estimated propensity scores on all patient cases from the
predictive model in line 1. From line 3 to 6, we train our
ITRs model as follows: For the j-th iteration, we select
a particular translation λj ∈ (0, 1) with grid search. The
translation range is defined as (0, 1) because the translation
of 0 makes all losses non-negative and the translation of 1
makes all losses non-positive in our setting, which are the two
extreme cases for the propensity score overfitting problem.
We randomly initialize the trainable parameters wj in the
ITRs model, which has the same network structure as the
predictive model in Fig. 3 but is optimized with an objective
function based on the estimated propensity score. Depending
on the translation λj , we minimize the objective functions
with respect to the trainable parameters wj (line 4). For each
λj , both the minimizer w∗j and its corresponding treatment
matching factor sj (line 5) are saved. In line 7, the final
minimization step outputs the pair (s∗,w∗) that generates the
minimum value for the SNIPS risk in (4).



The differences between the minimization goal in line 4
and the IPS risk in (2) are the estimated propensity score
P̂(a = ai|X) and the translation λj . Therefore, we name
the algorithm estimated translated Inverse Propensity Score
(etIPS). Intuitively, the proposed framework enables the new
policy to be trained through encouraging the network to
learn from the physicians’ treatment decisions with a positive
outcome as well as from unsuccessful cases (treatments with
a negative outcome).

Algorithm 1: etIPS
Input: A dataset of the form {Xi, ai, δi}mi=1.
Output: The policy of the optimal ITRs πw∗(a|X).

1 Learn the physicians’ policy P̂(a|X) with {Xi, ai}mi=1

using the network structure in Fig. 3.
2 Compute the estimated propensity score

p̂i := P̂(a = ai|Xi) for all i.
3 for λj ∈ (0, 1) do

4 w∗j ← arg minwj

{
1
m

∑m
i=1(δi − λj)

πwj
(ai|Xi)

p̂i

}

5 sj ← 1
m

∑m
i=1

πw∗
j
(ai|Xi)

p̂i

6 end

7 s∗,w∗ ← arg minsj ,w∗
j

{
1
sj

1
m

∑m
i=1 δi

πwj
(ai|Xi)

p̂i

}

8 return πw∗(a|X)

V. EXPERIMENTS

In this section, we provide details of the experiments con-
ducted on three tasks, of which two are tailored to the BLBF
setting from the MNIST dataset, which is common for the
evaluation of many learning algorithms. As the ground truth
labels in the MNIST dataset are available, the performance is
evaluated with the metric accuracy. It serves as a simulation
study [2], [21], [23]. In contrast, the MIMIC-III dataset only
contains the feedback information of assigned treatments,
and the offline evaluation is therefore employed, which can
estimate the risk of a new policy from data observed from
physicians.

A. Implementation details

The neural network-related models are built with the tensor-
flow package [33]. Hyperparameters are tuned with the hyper-
opt package [34]. Five-fold cross-validation is implemented to
report the variance of the performance.2

B. Simulation studies

In this section, we simulate two controllable modeling tasks
that resemble the true data situation. We aim to verify the fol-
lowing hypotheses empirically: a) Without ground truth labels,
the propensity score-based objective function is applicable to
sequential classification tasks. b) The estimated propensity
score could be used to replace the true propensity score in
the propensity score-based objective function.

2Related scripts see https://github.com/ZhiliangWu/etips.

1) Dataset generation: We define two sequential classi-
fication tasks based on the MNIST dataset. The first task,
zeros counting MNIST, is to predict the number of zeros
given a sequence of randomly sampled digit images. During
sampling, we limit the maximum number of 0’s to be 2 so
that the prediction takes the form of a classification task with
3 classes. The second task, row-by-row MNIST, is to predict
the label of the digit (0 − 9) of the image. Each row of the
image is presented sequentially to the neural network, and the
classification is performed after reading all rows. Like other
supervised learning tasks, the resulting dataset is in the form of
{Xi, a

∗
i }mi=1, where a∗i is the ground truth label. From that, the

supervised to bandit conversion method [35] is employed to
generate BLBF datasets of the form {Xi, ai, δi, pi}mi=1. If we
view the tasks in a BLBF perspective, the context is a sequence
of images X , the action a is the label prediction of the given
sequence, the loss δ reflects the correctness of the prediction,
and p is the probability of the label prediction. A logging
policy, which is similar to the physicians’ policy in the clinical
setting, is required to generate the label prediction for different
contexts. Also, we need to set a suboptimal accuracy for it, just
like we assume there is still improvement space for physicians.
Similar to the conversion procedure [21], we train a neural
network to output P(a|·) based on 5% of the supervised dataset
{Xi, a

∗
i }mi=1 and select the one with an accuracy around 66%

as the logging policy. The label prediction ai is sampled from
the output distribution of the logging policy. Meanwhile, the
propensity score pi is also recorded for the sampled action.
Finally, the loss δi is computed based on the ground truth
label a∗i , i.e., the loss is 0 if the label prediction is the ground
truth label and 1 otherwise. More details of these generated
datasets can be found in Appendix G.

2) Baselines: For all approaches except the direct method,
a many-to-one structure with GRU/LSTM is used to deal with
the sequential inputs. The neural network structure in Fig. 3 is
not used because there is only sequential image information
for the defined tasks. For the direct method, loss prediction
is defined as the task for the network, and the action of
label prediction is integrated in a way similar to the static
information as in Fig. 3.

a. Direct method (DM): This method splits the task into
two steps: It first learns the mapping E[δ|X, a] to the
expected loss given the context and action. The label
prediction is then made by selecting the action with the
lowest predicted loss arg mina E[δ|X, a].

b. Random policy (RP): A dummy policy to perform a label
prediction uniformly at random, which serves as a weak
baseline.

c. Inverse Propensity Score (IPS): The network is trained to
minimize the IPS risk as defined in (2).

d. Translated Inverse Propensity Score (tIPS): The network
is trained by minimizing the λ-translated IPS risk as
defined in (5).

e. Estimated Inverse Propensity Score (eIPS): The network
is trained by minimizing the IPS risk as defined in (2)
with the estimated propensity score.



3) Results: Tab. I shows the prediction performance of
different approaches. Both tIPS and etIPS achieve more than
90% accuracy, where etIPS yields the best results. RP has
an accuracy of around 1

#actions , which is better than DM and
IPS/eIPS.

TABLE I
ACCURACY OF DIFFERENT APPROACHES ON SEQUENTIAL

CLASSIFICATION TASKS

propensity score zeros counting MNIST row-by-row MNIST

DM -* 0.343± 0.0001 0.098± 0.0022
RP -∗ 0.363± 0.0001 0.103± 0.0001

IPS true 0.301± 0.012 0.020± 0.0061
tIPS true 0.899± 0.0229 0.931± 0.0852

eIPS estimated 0.319± 0.0075 0.016± 0.0098
etIPS estimated 0.923± 0.0122 0.953± 0.0390

*The propensity score is not involved in the algorithm.

4) Discussion: Trained on partial feedback information, an
optimal policy should also be able to perform the label pre-
diction with the lowest risk (i.e., the highest accuracy), which
works in the same way as an optimal classifier. Furthermore,
accuracy serves as a good metric here to evaluate a new policy
because the datasets have a balanced distribution for different
output classes. The accuracy trained with cross-entropy loss
and full label information is around 95% for both tasks. From
the performance of tIPS/etIPS, we see that the (estimated)
propensity score-based objective function can deliver satisfy-
ing performance on the sequential prediction tasks when the
ground truth label is not available. In addition, the performance
of etIPS is a little better than tIPS. As proven [36], the reason is
that the estimated propensity score has the potential to reduce
the variance during the learning procedure. Furthermore, the
performance of IPS/eIPS is worse than the weak baseline
RP. Its poor performance is due to the propensity score
overfitting problem, which can be diagnosed by computing the
treatment matching factor in (3). For example, in the row-by-
row MNIST task, s(πIPS) = 0.0061 while s(πtIPS) = 0.926.
Last but not least, the performance of DM is as poor as RP.
In practice, the performance for modeling E[δ|X, a] is good
with an accuracy of more than 85% (0.843 ± 0.0072 and
0.888±0.0027 respectively). However, for the loss prediction,
the network is trained with only one action under a certain
context. The knowledge of the losses of different actions under
the same context is missing during training. As a result, the
trained network would predict similar loss values for different
actions under the same context, which accounts for the poor
performance on the prediction task.

C. Experiments on the MIMIC-III dataset
1) Evaluation metrics: For the MIMIC-III dataset, the goal

is to learn the optimal ITRs for the administration of IV and
VP. It is worth mentioning that offline evaluation remains a
challenge, and the new policy requires further investigation
with domain experts like physicians [37]. A new policy is
hereby evaluated with three different evaluation methods:

a. Average Treatment Effects under the new policy
(ATENP): This method evaluates the new policy in a
deterministic way, i.e., it only considers the treatment
suggestion with the highest probability. According to the
treatment suggestions of the new policy, the samples in
the test set are divided into two groups: those who follow
the new policy (group one) and those who do not (group
two) [2], [19]. The difference between the average risk
in these two groups shows the average treatment effects
under the new policy. If a new policy is better than the
physicians’ policy, the difference should be below zero.

b. Inverse Propensity Score Estimator (IPS): This method
estimates the risk of the new policy as in (2). As we
discussed earlier, it may suffer from propensity score
overfitting problem and thus be strongly biased.

c. Doubly Robust Estimator (DR): The doubly robust tech-
nique consists of an outcome prediction model and a
propensity score model [7] as

r̂DR(πw) =
1

m

m∑

i=1

[∑

a∈A
πw(a|Xi)δ̂(Xi, a)

+
πw(ai|Xi)

P̂(ai|Xi)

(
δi − δ̂(Xi, ai)

)]

where δ̂(X, a) is the loss prediction model and P̂(a|X) is
the propensity score model. It protects the mismodeling
of either model by combining them to get the best of
both.

As the problem is formulated as a risk minimization problem,
a lower value of ATENP/IPS/DR is preferred. In Appendix H,
the investigation of the correlation between accuracy and the
risk estimated by these methods is provided to shed some
light on the performance of different evaluation approaches. In
short, ATENP shows a consistent correlation with the accuracy
and is therefore trustworthy when there is a large sample size
in group one. In comparison, the IPS estimator will be strongly
biased when the propensity score overfitting problem occurs.
In such cases, the DR estimator is more reliable by taking
advantage of an outcome prediction model for correction.

2) Baselines: The true propensity score is not available
in observational studies, which prevents the application of
IPS and tIPS. Instead, we implement DM, RP, and eIPS for
evaluation purposes. The network structure for eIPS follows
the one in Fig. 3, and DM is defined as a loss prediction task
with the treatment as an additional input feature. In addition,
the predictive modeling of treatment decisions (cf. Sec. IV-B)
and the most frequent policy are also included as baselines.
The most frequent policy always suggests the most frequent
treatment in the training dataset. In our case, it is the zero
dosage of both IV and VP. Besides the evaluation methods,
the treatment matching factor (TMF, cf. (3)) is computed based
on the estimated propensity score to diagnose the propensity
score overfitting problem.

3) Results: Tab. II shows the performance of the policies
trained by different approaches. Our proposed approach turns
out to have the lowest value in ATENP and DR with a



TABLE II
EVALUATION WITH DIFFERENT RISK ESTIMATORS

ATENP IPS DR TMF

Predictive Modeling −0.019± 0.0021 0.523± 0.0229 0.523± 0.0021 1.034± 0.0391
Direct Method* 0.032± 0.0001 - - -
Most Frequent† −0.023± 0.0001 - - -
Random Policy −0.023± 0.0001 0.125± 0.0001 0.478± 0.0026 0.243± 0.0001

Estimated Inverse Propensity Score −0.025± 0.1009 0.009± 0.0019 0.504± 0.0071 0.018± 0.0029
Estimated Translated Inverse Propensity Score −0.143± 0.0099 0.169± 0.0160 0.471± 0.0060 0.438± 0.0279

*There is no probability of the treatment suggestion given by argmina E[δ|X, a]. The values for IPS/DR/TMF can therefore not be computed.
†A deterministic policy to suggest the most frequent treatment. There is no probability information involved.

high value of TMF (only lower than predictive modeling). In
addition, the eIPS have the lowest value in the IPS evaluation
with the lowest TMF.

4) Discussion: From a methodological perspective, the
baseline approaches DM and eIPS can be viewed as the deep
learning variants of the two-step method proposed by Qian
et al. [9] and outcome weighted learning (OWL) [10], re-
spectively. Similarly, our proposed method can be understood
as a deep learning variant of residual weight learning (RWL)
proposed by Zhou et al. [2]. The difference is that instead of
learning a baseline by a separate regression model, our method
is more efficient by trying different translations λj to find the
optimal baseline. Furthermore, a predicted baseline in RWL
inevitably introduces additional noise in the loss, which can
potentially deteriorate the learning.

For ATENP, a value below zero means that the new policy
is better than the physicians’ policy. In the predictive modeling
setting, the policy tries to mimic the physicians’ policy as well
as possible. The ATENP of it being around zero is therefore
expected as it doesn’t consider the outcome information. In
comparison, the ATENP of etIPS shows a strong negative
value of −0.143. It indicates that the observed treatments,
which are the same as suggested by the new policy, have
a much lower risk than those that are not. Also, the risk in
group one of etIPS is estimated by 1929.8± 111.33 samples,
which is relatively large, compared to 21.8 ± 9.62 for eIPS
and 347± 0.01 for DM.

The lowest IPS risk for the eIPS is strongly biased, which
can be indicated by both the small sample size in group one
(21.8 ± 9.62) for ATENP and its lowest treatment matching
factor (0.018 ± 0.0029). The DR estimator corrects the bias
with an outcome prediction model, resulting in a change from
0.009 to 0.504.

Last but not least, although the TMF value of etIPS is larger
than other baselines except the predictive model, it is still
a bit away from the expected value of 1 (cf. Appendix C).
Two reasons account for it. The first is the suboptimal ac-
curacy of the predictive model, which is 0.571 ± 0.0037 in
the test set. As mentioned earlier, the estimated propensity
score is used to compute TMF. Therefore, it indicates the
alignment between the policies of the predictive model and
other models. As the predictive model cannot perfectly reflect
the physicians’ policy, the TMF value computed based on it

does not necessarily have to be strictly around 1 anymore.
Nevertheless, the TMF computed from the predictive model
is still worth being referenced when the value is extremely
low like for eIPS. The second reason is the average risk in
the dataset being 0.498. In other words, almost half of the
time, the physicians’ treatment does not receive a positive
outcome. The relatively large amount of negative feedback
encourages the algorithm to learn a new policy that is a bit
different from the physicians. Besides, there are 25 treatment
decisions observed with strong skewness in its distribution (cf.
Appendix B). These facts would jointly result in a lower TMF.

VI. CONCLUSION

In this paper, we propose a general framework, etIPS, to
learn optimal ITRs. It consists of a predictive model and an
ITRs model. The former takes advantage of the state-of-the-
art predictive modeling of the treatment decisions while the
latter is based on the latest formulation of BLBF problems. By
casting the ITRs learning as a problem in BLBF, our proposed
approach can discover the optimal policies with sequential
EHRs from observational studies. Intuitively speaking, the new
policy is learned by encouraging the treatments with a positive
outcome and discouraging the treatments with a negative
outcome. The reformulation of the SNIPS estimator ensures
that such a learning objective is correctly integrated into the
objective function of the neural network. The generality of
our proposed framework lies in the flexibility to choose an
arbitrary propensity score model as well as any ITRs model
that would fit the patient features.

With experiments on two simulated BLBF tasks using the
MNIST dataset, we have empirically shown that the estimated
propensity score can replace the true propensity score when the
latter is not known. The result facilitates the usage of data from
observational studies without any recorded propensity score.
Furthermore, in various offline evaluation methods, our learned
policies perform better than the physicians’ policy. A true
performance evaluation, naturally, would require additional
clinical testing.

The proposed framework is compatible with any neural net-
work structures and any data sources, not limiting to recurrent
neural networks and sequential EHRs, as we have presented
in this paper. With more advanced network structures, the
performance of our framework could be further boosted.



As part of future work, we want to study model explainabil-
ity or interpretability. If the treatment suggestion is provided
together with explanations, the physicians would find such
clinical decision support systems more transparent and become
more encouraged to apply it. For example, the explanation can
show which parts of the static or sequential information are
especially important for the final treatment suggestion.
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evaluation of the sofa score to predict outcome in critically ill patients,”
Jama, vol. 286, no. 14, pp. 1754–1758, 2001.

[27] A. Raghu, M. Komorowski, I. Ahmed, L. Celi, P. Szolovits, and
M. Ghassemi, “Deep reinforcement learning for sepsis treatment,” arXiv
preprint arXiv:1711.09602, 2017.

[28] T. Hesterberg, “Weighted average importance sampling and defensive
mixture distributions,” Technometrics, vol. 37, no. 2, pp. 185–194, 1995.

[29] Y. Bengio, P. Frasconi, and P. Simard, “The problem of learning
long-term dependencies in recurrent networks,” in IEEE international
conference on neural networks. IEEE, 1993, pp. 1183–1188.

[30] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[31] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” in NIPS 2014
Workshop on Deep Learning, December 2014, 2014.

[32] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international conference
on acoustics, speech and signal processing. IEEE, 2013, pp. 6645–
6649.

[33] M. Abadi, A. Agarwal et al., “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015, software available from
tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[34] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. D. Cox,
“Hyperopt: a python library for model selection and hyperparameter
optimization,” Computational Science & Discovery, vol. 8, no. 1, p.
014008, jul 2015.

[35] A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. Schapire,
“Taming the monster: A fast and simple algorithm for contextual
bandits,” in International Conference on Machine Learning, 2014, pp.
1638–1646.



[36] Y. Xie, B. Liu, Q. Liu, Z. Wang, Y. Zhou, and J. Peng, “Off-policy
evaluation and learning from logged bandit feedback: Error reduction
via surrogate policy,” arXiv preprint arXiv:1808.00232, 2018.

[37] O. Gottesman, F. Johansson et al., “Evaluating reinforcement learn-
ing algorithms in observational health settings,” arXiv preprint
arXiv:1805.12298, 2018.

APPENDIX

A. Feature description

The included features are chosen to best represent the status
of each patient [19]. There could possibly be confounding
effects if we haven’t included some important features in the
model. In the chosen features, most have continuous values
except for gender, readmission, and mechanical ventilation
being binary.

Static information: age, gender, readmission to intensive
care.

Sequential information: weight (kg), Glasgow Coma Scale
(GCS), heart rate(HR), Systolic, Mean and Diastolic Blood
Pressure(SysBP, MeanBP, DiaBP), Respiratory Rate (RR),
SpO2, temperature (celsius), FiO2, Potassium, Sodium, Chlo-
ride, Glucose, Blood Urea Nitrogen (BUN), Creatinie, Mag-
nesium, Calcium, SGOT, SGPT, Total Bilirubin, Hemoglobin,
count of the white blood cells, count of the platelets, Partial
Thromboplastin Time (PTT), Prothorombin Time (PT), Inter-
national Normalized Ratio (INR), Arterial potential Hydrogen,
paO2, paCO2, Arterial Base Excess, Artial lactate, HCO3, me-
chanical ventilation, shock index, PaO2/FiO2 ratio, maximum
dose of vasopressor over 4 hours, intravenous fluids intake over
4 hours, total input, total urine fluid output, urine output over
4 hours, cumulated fluid balance, Sequential Organ Failure
Assessment (SOFA) over 4 hours, Systemic Inflammatory
Response Syndrome (SIRS) over 4 hours.

B. Treatment decisions

Fig. 4 shows the distribution of different treatment options.
The skewness of the distribution is mainly due to the unbal-
anced distribution of the discretized VP.
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Fig. 4. Distribution of treatment decisions and discretized IV/VP

Due to the possible update of the MIMIC-III database, there
are slight differences between the values in Table III compared
to the ones reported by Komorowski et al. [19].

TABLE III
RANGE AND MEDIAN OF IV AND VP

IV fluids (mL/ 4 hours) Vasopressors (mcg/kg/min)
Treatment range median range median

1 0 0 0 0
2 0 - 48 30 0 - 0.08 0.04
3 48 - 150 80 0.08 - 0.2 0.13
4 150 - 500 284 0.2 - 0.45 0.27
5 > 500 874 > 0.45 0.78

C. Treatment matching factor

EX∼P(X)Ea∼P(a|X)

[
πw(a|X)

P(a|X)

]

=
∑

X

P(X)
∑

a

P(a|X)
πw(a|X)

P(a|X)

=
∑

X

∑

a

P(X)πw(a|X)

= 1

D. Lack of equvariance of the IPS estimator

min
w

1

m

m∑

i=1

(δi+ c)
πw(ai|Xi)

P(ai|Xi)
6= c+ min

w

1

m
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δi
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E. Equvariance of the SNIPS estimator

min
w

1
m

∑m
i=1(δi + c)πw(ai|Xi)
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1
m
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F. Reformulation of the SNIPS risk

The optimization objective of the SNIPS risk

w∗ = arg min
w

1
m

∑m
i=1 δi

πw(ai|Xi)
P(ai|Xi)

1
m

∑m
i=1

πw(ai|Xi)
P(ai|Xi)

could be reformulated as a two-step optimization problem

s∗,w∗ = arg min
sj

{
arg min

wj

1
m

∑m
i=1 δi

πwj
(ai|Xi)

P(ai|Xi)

sj
,

s.t.
1

m

m∑

i=1

πwj
(ai|Xi)

P(ai|Xi)
= sj

}



where sj is fixed to different values and wj represents the
corresponding optimization parameters. In other words, the
minimizer can be found by 1) fixing sj to a particular
value within a grid search, and 2) solving the corresponding
interior constrained optimization problem to find w∗j . The final
minimizer is the pair with the lowest SNIPS risk among all
(sj , w

∗
j ) pairs.

The remaining problem is to solve the interior constrained
optimization problem. It is natural to use the Lagrange mul-
tiplier to remove the constraint of the fixed sj . Formally, the
problem

w∗j = arg min
wj

{
1

m

m∑

i=1

δi
πwj (ai|Xi)

P(ai|Xi)
,

s.t.
1

m

m∑

i=1

πwj (ai|Xi)

P(ai|Xi)
= sj

}

is equivalent to

w∗j , λ
∗
j = arg min

wj

max
λj

{
1

m

m∑

i=1

(δi−λj)
πwj (ai|Xi)

P(ai|Xi)
+λjsj

}
.

Considering the fact that searching for λ∗j with a fixed sj is
expensive but the inverse is not, reversing the role of λ∗j and sj
makes the problem more tractable, i.e., fix λj first, optimize for
w∗j , and compute the corresponding sj as well as the SNIPS
risk r̂SNIPS(πw∗

j
). Formally, the optimization problem is further

reduced to

w∗j = arg min
wj

{
1

m

m∑

i=1

(δi − λj)
πwj

(ai|Xi)

P(ai|Xi)

}
.

G. Sequential classification tasks from MNIST

Table IV shows some statistics for the tailored sequential
classification tasks. The output classes in both tasks have a
balanced distribution. Meanwhile, due to the preference of
the logging policy, the label predictions show the skewness
to some extend in Fig. 5.

TABLE IV
BASIC STATISTICS OF THE TAILORED TASKS WITH MNIST

zeros counting MNIST row-by-row MNIST
#samples 10, 000 70, 000

input shape
(#time-steps, #features) (20± 5, 784) (28, 28)

#output classes 3 10
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Fig. 5. Distribution of label prediction of the logging policy

H. Different evaluation methods

As the accuracy is computed with the ground truth label,
it serves as a good reference to understand the performance
of different risk estimators. In Fig. 6 and 7, the blue color
denotes the performance of zeros counting MNIST while red
the row-by-row MNIST.
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Fig. 6. Correlation between the accuracy and ATENP

Although the policy is evaluated in a deterministic way,
ATENP shows a consistent correlation with the accuracy of
different policies. In addition, the sample size in different
groups serves as a good indicator for the propensity score
overfitting problem. For the row-by-row MNIST, there are only
4.6 ± 3.83 samples in group one for the policy learned with
IPS, while the number is 4406.8 ± 373.43 for tIPS, which
corresponds to the low treatment matching factors as discussed
in Sec. V-B3.

In Fig. 7, IPS/eIPS approaches have the smallest estimated
risk, which indicates that the IPS estimator is strongly biased
if the propensity score overfitting problem occurs. Taking
advantage of an additional outcome prediction model, the DR
estimator corrects the risk estimation and is therefore more
reliable.
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Fig. 7. Comparison of the risk estimation with IPS/DR estimator
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Abstract—Deep neural networks are increasingly being used
for the analysis of medical images. However, most works ne-
glect the uncertainty in the model’s prediction. We propose an
uncertainty-aware deep kernel learning model which permits the
estimation of the uncertainty in the prediction by a pipeline
of a Convolutional Neural Network and a sparse Gaussian
Process. Furthermore, we adapt different pre-training methods
to investigate their impacts on the proposed model. We apply
our approach to Bone Age Prediction and Lesion Localization.
In most cases, the proposed model shows better performance
compared to common architectures. More importantly, our model
expresses systematically higher confidence in more accurate
predictions and less confidence in less accurate ones. Our model
can also be used to detect challenging and controversial test
samples. Compared to related methods such as Monte-Carlo
Dropout, our approach derives the uncertainty information in
a purely analytical fashion and is thus computationally more
efficient.

Index Terms—uncertainty quantification, medical imaging,
sparse Gaussian Process approximation, deep Convolutional
Neural Networks,

I. INTRODUCTION

Various machine learning methods have been developed to
support patient care to deal with the exploding amount of
healthcare data [1], [2]. An important example is medical
imaging. In classical image analysis, the standard machine
learning methods make predictions based on sophisticated
handcrafted features extracted from the medical images. With
the introduction of deep neural networks (DNNs), especially
Convolutional Neural Networks (CNNs), manual feature engi-
neering is replaced by self-organized supervised representation
learning.

Although DNNs now define the state-of-the-art in many
applications, an often encountered problem is that they fail to
provide reasonable confidence estimates for their predictions
[3]. In a classification task, this can result in over-confident
predictions for misclassified samples [4]. This observation has
encouraged the development of various calibration methods
such as temperature scaling [5] and isotonic regression [6]. In a
regression task, however, the modeling of input-dependent pre-
dictive uncertainty is rarely considered. Whereas in classifica-
tion, a well-calibrated probabilistic prediction can sometimes
be used to derive confidence values, in regression one needs

Medical Images

Deep Convolutional
Neural Networks

Scalable Variational
Gaussian Process

Fig. 1. An illustration of our proposed model: Combining a deep Con-
volutional Neural Network with the Scalable Variational Gaussian Process.
Latent features of a medical image are extracted by the Convolutional Neural
Network and then consumed by the Scalable Variational Gaussian Process.
The proposed model outputs a predictive distribution of the Gaussian Process
posterior, which can be interpreted as a mean estimate and a predictive
variance. For instance, with a localized kernel the prediction of a rare test
sample (the rightmost image) with few similar training samples demonstrates
a larger variance.

to estimate confidence considering predictive distributions [7].

The problem of quantifying the predictive uncertainty in
deep learning models limits their applicability to safety-critical
domains such as healthcare [8], [9]. In most cases, existing
clinical decision support systems that rely on deep learning



can only provide a point estimate, e.g., for a continuous
severity score, progression-free survival time, or length-of-
stay. Physicians, who are supposed to interpret the output
of a DNN, face the challenge of not knowing how much
they could trust the prediction. The goal of this paper is to
provide a quantified uncertainty estimate for each prediction
in a principled, mathematically sound manner. An unusually
high uncertainty estimate would encourage the physician to
investigate a case more closely since it is more likely to deviate
from the “normal” ones. A high uncertainty typically means
that there are few similar cases in the training data.

In a frequentist analysis of linear regression models, the pre-
dicted variance is derived from that of the model parameters;
due to its high-dimensional nonlinear nature, this cannot easily
be applied to DNNs. Currently, leading approaches to reason
on the uncertainty in DNNs include MC dropout methods [10],
[11], Bayesian neural networks [12], [13] and deep ensembles
[14]. These methods could become computationally expensive
when large and deep neural networks are necessary. In this
paper, we explore another direction to quantify predictive
uncertainty with Gaussian Processes (GPs), a well-known class
of Bayesian machine learning methods [15]. A GP implicitly
ties the predictive uncertainty with the similarity between
samples, which does not model ensembles and can produce
a predictive distribution with only one forward pass.

More specifically, when localized kernels are being used,
e.g., Radial Basis Function (RBF) kernels or the more general
Matérn kernels, a GP model would be confident in its mean
estimate if there have been training samples observed in
the “neighborhood” of the test input. Otherwise, the model
would tend to output high variances for the predictions. Thus,
for RBF-kernels, the Euclidean distance of inputs must be
meaningful in the application, which often is not the case
in high-dimensional problems, a typical example being raw
images described by their pixel values.

Another known challenge in GP is the fact that computa-
tional complexity scales as O(n3) and storage complexity as
O(n2), where n denotes the number of data samples [15]. In
recent years, significant progress has been made to address
these scalability issues [16], which has motivated work on
combining DNNs with GPs, a.k.a. Deep Kernel Learning [17].
The pipeline architecture we propose in this paper is shown
in Fig. 1, where we apply a state-of-the-art sparse GP on top
of a CNN for predictions on medical images.

Our contribution can be summarized as follows:
• We present a novel deep kernel learning model for regres-

sion on medical images based on the latest developments
in sparse GPs and CNNs.

• We enhance the proposed model by introducing different
pre-training methods for the CNNs and initialization
methods to optimize the inducing points in sparse GPs.

• We apply the proposed model to the tasks of univariate
bone age prediction and multivariate lesion localization,
and provide a thorough comparison of different pre-
training and initialization methods in terms of both point
estimate and predictive uncertainty.

II. RELATED WORK

Deep Convolutional Neural Networks for Medical Image
Analysis The analysis of medical images is arguably one of the
areas where deep learning methods have been demonstrating
the most promising performances, including diagnostics, der-
matology, radiology, ophthalmology, and pathology [18]. Deep
learning-based solutions can offer physicians second opinions
by, e.g., annotating the regions of interest. More specifically,
CNN-based solutions have achieved physician-level accuracy,
e.g., with CheXNet [19] for pneumonia detection, which is
a 121-layer Dense Convolutional Network (DenseNet) [20]
trained on the ChestX-ray 14 dataset [21]. One factor limiting
the progress is the relatively small size of labeled datasets
available for specific clinical tasks when compared to large
visual databases on nonmedical images, like the ImageNet
dataset [22]. Therefore, methods like transfer learning are
commonly used to take advantage of models trained on more
or less unrelated datasets. However, many of these solutions
focus only on improving the point estimate performance,
ignoring the importance of the predictions’ uncertainty. In
this work, we focus on addressing the problem of providing
meaningful uncertainty estimates.

Scalable Variational Gaussian Process with Neural Net-
works Efforts from earlier times include the Bayesian com-
mitte machine [23], Nyström methods [24], [25], the Fully
Independent Training Conditional (FITC) Approximation [26],
and Variational Free Energy (VFE) [27]. Recently, [28] pro-
posed the Scalable Variational Gaussian Process (SVGP),
which reduces the computational complexity to O(m3), where
m denotes the number of inducing points (more details see
Sec. III-A). In addition, SVGP enables the training with
stochastic gradient descent (SGD)-based methods. Afterward,
[29] combined SVGP with DNNs for classification tasks. The
approach is called Gaussian Process hybrid deep networks
(GPDNN). [17] combined neural networks with a KISS-GP
covariance matrix, which takes advantage of a sparse matrix
with inducing points lying on some grid structure [30]. The
proposed method is called Deep Kernel Learning (DKL). More
recently, [31] proposed the Parametric Predictive Gaussian
Process (PPGP) regressor to improve the predictive variances
in SVGP-based models, which shows promising performance
in various applications. Inspired by the idea of DKL, we
propose in this paper a model to train a state-of-the-art sparse
GP model with deep CNNs in a more cohesive way.

Pre-training Techniques for Deep Convolutional Neural
networks Pre-training techniques have been developed for
Deep Belief Networks [32] and stacked auto-encoders [33],
where unsupervised pre-training was used for initialization,
followed by supervised fine-tuning. Meanwhile, transfer learn-
ing techniques received increasing attention due to their ability
to derive good representations for instances also from domains
not considered in training [34]. After the introduction of the
ImageNet challenge [22], it has been common practice to
pre-train models on the ImageNet dataset as an initialization
for other downstream tasks. More recently, self-supervised



learning methods, e.g., contrastive learning [35], have gained
much attention as a powerful learning paradigm, which bridges
the performance gap between supervised learning methods and
unsupervised ones significantly. From a pre-training perspec-
tive, self-supervised learning can be considered as an example
in deep metric learning (DML). The goal of DML is to map
data to a latent space where data points with similar labels
are located close together, and data with dissimilar labels are
far apart [36]. In this paper, we adapt different pre-training
methods under the setting of DKL.

III. METHOD

In this section, we provide a detailed introduction to our
method. Our proposed model consists of two consecutive
parts: a trainable feature extractor based on deep CNNs and an
uncertainty-aware prediction model in the form of sparse GPs.
The feature extractor is also commonly known as the back-
bone, because it refers to the parts of the network excluding the
final classification layers in, e.g., DenseNets [20] or ResNets
[37]. The output of such backbones, namely the feature maps,
a.k.a. latent representations of the raw input, serves as input
to the predictive GP regression. In the following, we first
discuss how sparse GP models can scale to large datasets.
Afterward, we introduce our initialization and pre-training
techniques. Finally, we summarize the complete algorithm
from the network initialization to the GP fine-tuning.

Notations: We denote the training dataset as {Xi, yi}ni=1,
where Xi ∈ RnH×nW×nC is an image of size nH×nW with nC
color dimensions, yi ∈ R is the target variable in a univariate
regression task, and n is the number of data samples. With the
CNN backbones, we extract a latent representation from Xi

and denote it as hi.

A. Scalable Variational Gaussian Processes as Output Layers

A Gaussian process (GP) is a collection of random variables,
any finite number of which have a joint zero-mean Gaussian
distribution [15]. Formally, if we denote all target variables
yi in the column vector as y ∈ Rn in a univariate regression
problem, it follows

y ∼ N (0,K + σ2
obsI),

where the covariance matrix K ∈ Rn×n is parametrized by
the respective inputs as

kij := k(hi,hj)

and σ2
obs is the noise variance. Note that in a standard setup

of GP, the input to the kernel function k(·, ·) is a pair of
feature vectors. In the scope of our work, we feed the latent
representations generated by CNN backbones to the kernel
function.

To find optimal hyperparameters in the kernel function (e.g.,
the scaling parameter in an RBF-kernel), the training of the
GP involves maximizing the log marginal likelihood

LGP = −1

2
y>
(
K + σ2

obsI
)−1

y−1

2
log
∣∣K + σ2

obsI
∣∣−n

2
log 2π.

Given a new input sample h∗, the GP model provides a
predictive distribution as

f∗ ∼ N (k>∗
(
K + σ2

obsI
)−1

y, k∗∗ − k>∗
(
K + σ2

obsI
)−1

k∗),

where k∗ = [k(h1,h∗), . . . , k(hn,h∗)]> ∈ Rn.
However, the complexity from the inverse operation of the

large matrices in LGP and f∗ hinders the application of GP
models to large-scale datasets, which was the motivation for
works on different approximation methods.

The key idea of [26]–[28] is to learn a number of so-
called inducing points by variational methods, which can be
viewed as a learnable pseudo dataset {zi, ui}mi=1 =: (Z,u)
to summarize the original large dataset, where m � n. The
approximation follows these steps: 1) The original dataset is
augmented with the inducing points; 2) Based on different
assumptions, the log marginal likelihood log p(y) is approxi-
mated as a function only of inducing points; 3) Optimization
is done by maximizing either the approximated log marginal
likelihood [26], or the lower bound of it, which is also
known as the Evidence Lower BOund (ELBO) [27], [28]; 4)
The predictions for new samples are based on the optimized
inducing points instead of the original dataset. Among all ap-
proximation methods, SVGP turns out to be the most popular
one, possibly thanks to its largely reduced computational and
storage complexity as well as the natural integration of SGD-
based methods [28], [38]. Therefore, we take advantage of
SVGP as one of the sparse GP models in this paper.

In SVGP [28], a multivariate Normal distribution N (m,S)
is introduced to the variational distribution q(u). [31] maxi-
mizes the ELBO

LSVGP =

n∑

i=1

{
logN

(
yi | µf (hi) , σ

2
obs

)
−
σ2
f (hi)

2σ2
obs

}

−KL(q(u)‖p(u)),
(1)

where we have the predictive mean µf (hi) = k>i K
−1
uum,

the predictive variance σ2
f (hi) = kii − k>i K

−1
uuki +

k>i K
−1
uuSK

−1
uuki, p(u) = N (0,Kuu),ki ∈ Rm,Kuu ∈

Rm×m, and KL(·||·) denotes the Kullback–Leibler divergence
between two distributions. We use Θ to denote all trainable
parameters and adapt them with SGD-based methods, includ-
ing m,S for the variational distribution q(u), inducing points
Z,u for the covariance matrices like Kuu or ki, σobs in the
likelihood model and various hyperparameters in the kernel
function, e.g., length scale in an RBF kernel.

[31] points out that the predictive distribution in SVGP
tends to be dominated by the observational noise and un-
derestimates the input-dependent uncertainty. As a solution,
they proposed the PPGP Regressor, which takes advantage of
the formulation of the predictive distributions in SVGP but
restores the symmetry of the function variance µf (hi) in the
training objective through the maximum likelihood estimation
(MLE) methods. Formally, the objective in PPGP is

LPPGP =

n∑

i=1

logN
(
yi | µf (hi) , σ

2
obs + σ2

f (hi)
)

−KL(q(u)‖p(u)).
(2)



In our experiments, we report results of both SVGP and
PPGP methods, which only differ in their respective ELBO
objectives.

Although the scalability problem in large datasets is nicely
addressed in the SVGP-based models, the commonly used
GP kernels, such as RBF and Matérn, cannot directly handle
high dimensional data such as images. Therefore, there are
many efforts to combine the inductive bias in neural networks
and the non-parametric nature of GP-based models, including
GPDNN [29] and DKL [17]. In [29] and [17], the training
is initiated with a standard neural network with a linear
predictive model fit on the target variable. Afterward, the
linear model is replaced with a GP to enable uncertainty-
aware prediction. In our experiments with these approaches,
we do not observe performance improvement in terms of point
estimates. Therefore, we explore other pre-training methods
that do not directly require the target variables, including
Convolutional Autoencoders and Deep Metric Learning.

Fig. 2 illustrates the basic idea of integrating DKL in our
proposed model. The image sample Xi is embedded in some
latent space defined by the backbone as hi. The SVGP-
based model then consumes hi as the input to produce the
predictive distribution N (µi, σ

2
i ) for the target variable yi. In

other words, we propose to use SVGP-based models as output
layers to replace the final linear layers found in common CNN
architectures. The trainable parameters Φ in the backbone and
Θ in the SVGP-based output layers are optimized together
w.r.t. the ELBO objective.

Based on our observations, we realized that two modifica-
tions turn out to be critical for training the proposed model.
First, we find it necessary for the model architecture to add
one more linear layer after the backbone to further reduce the
dimension of the latent space. In ResNet18 and DenseNet121,
the dimensions of the extracted latent spaces are 512 and
1024, respectively. These dimensions prove to be too large
for RBF kernel functions that rely on l2 norm, presumably
due to the fact that in high dimensional space, the Euclidean
norm becomes irrelevant as a distance measure [39], [40]. With
a thorough hyper-parameter search, we find that a dimension
reduction to 50 always shows a stable performance.

Second, the initialization of the inducing points plays an
important role. If the inducing inputs are initialized from

Fig. 2. Graphical model of deep kernel learning model in plate notation.
Nodes are variables where shaded ones are observed, and non-shaded ones
are latent variables. Plates indicate the repetition of the subgraph.

random vectors, the training never converges to meaningful
results in our experiments. One explanation would be that with
purely random initialization of inducing points, the covariance
function value between each pair of samples is also random
since it is defined via all inducing points (cf. Equation (1)
in [27]). To this end, the GP has no chance of modeling the
target based on these random distances with a multivariate
Gaussian. As a solution, we initialize inducing inputs by the
latent representations produced by the backbone from the
image samples. Formally, we initialize the inducing inputs by

zinit
i = hi = fΦ(Xi),

where the parameters Φ in the backbone can be initialized
from scratch, transferred from other models, or pre-trained in
auxiliary tasks. Such a procedure is similar to using a subset
of the dataset as the initial inducing inputs in a vanilla SVGP
model, where raw features are fed to the model directly.

So far, we focused on models for univariate regression
problems. For the multivariate case, we propose to use the
same backbone to generate the latent representations but feed
it as input to multiple independent SVGP-based models. The
number of involved SVGPs equals the dimension of the target
variables.1 For the cases where there are correlations between
the target variables, more advanced methods like Linear Model
of Coregionalization (LMC) can be used [41], which we leave
to our future work.

B. Pre-training Convolutional Neural Networks

In our proposed architecture, the sparse GP model is
defined in a latent space learned by the CNN backbone.
The optimization task is correspondingly twofold: the GP is
supposed to learn the parameters like the inducing points, and
the CNN backbone should adapt its parameters to generate
representative latent features. However, in the early phase of
training, the CNN backbone may not have learned to extract
representative features. In other words, the training samples
could be mapped somewhat randomly in the latent space. This
could pose a challenging task for the downstream GP model
such that – based on our observation of the experiments –
its parameters might converge to unfavorable values that are
difficult to correct later on. To address this issue, we anticipate
that the training quality could be improved by two strategies:
• Initialization with transfer learning in Sec. III-B1
• Pre-training with auxiliary tasks:

– Convolutional Autoencoder in Sec. III-B2
– Deep Metric Learning in Sec. III-B3

1) Transfer learning: We regard transfer learning as reusing
the knowledge from the models trained on different datasets.
In the simplest case, we consider reusing CNN layers that have
been trained on the classification task on the ImageNet dataset.
It has been shown that in a CNN architecture, the early layers
that are close to the input can learn to extract generic, low-
level features that may apply across different types of image

1This is also the configuration for the model with (multivariate) linear layers,
which facilitates a fair comparison in experiments.



data [34], [42]. These generic features typically include edges,
basic patterns, and color gradients. We anticipate that such an
initialization of the CNN would produce a latent space where
the distance between samples better represents the distance
in the original feature space, thus providing an advantageous
starting point of learning the GP kernel. In the following,
the pre-training methods are adapted to be used in settings
either with or without transfer learning. With the proposed
adaptations, we would be able to investigate the effectiveness
of various components through experiments.

2) Convolutional Autoencoder: The autoencoder (AE) is
a well-known unsupervised representation learning method
for dimensionality reduction. It consists of an encoder and
a decoder. The encoder maps the inputs to some lower-
dimensional latent space, whereas the decoder reconstructs the
inputs from the latent representations, which ensures that the
encoder has learned the most relevant features. Convolutional
Autoencoders (CAEs) are a special case of AEs in that the
convolutional filters are reused among different locations of
the input to preserve the spatial locality [43].

Normally, CAEs have several convolutional layers in the
encoder and transposed convolutional layers in the decoder.
To enable transfer learning in CAEs, we propose to use the
CNN backbone as the encoder. And we construct a symmetric
decoder using transposed convolutional layers. In such a way,
the decoder can have a similar model capacity to that of the
encoder. Formally, after getting the latent representations hi

from the encoder fΦ(·), we feed it into the decoder gΨ(·) to
reconstruct the original images

gΨ : Rh → RnH×nW×nC

hi 7→ gΨ(hi) =: X̂i,

where Ψ denotes the trainable parameters in the decoder
network. The parameters of the encoder Φ can be initialized
from scratch or from models using transfer learning. The
training of the CAE involves minimizing the Mean Squared
Error (MSE) between the original image sample Xi and the
reconstructed image X̂i. Formally, the loss function is defined
as

JCAE =
1

n

n∑

i=1

‖Xi − X̂i‖22, (3)

where ‖ · ‖2 denotes the Euclidean norm.
3) Deep Metric Learning: Taking advantage of the struc-

ture of twin neural networks (replications of the same NN),
CNN backbones are applied in DML for learning the latent
representations so that samples with similar labels would be
mapped closer to each other in the latent space. The latent
representations from the trained backbones turn out to be
effective for tasks like face verification [44], [45] or person
re-identification [46].

Given an image sample Xi from the dataset, the backbone
defines a function fΦ(·) to embed it in some latent space.

Formally, we have

fΦ : RnH×nW×nC → Rh

Xi 7→ fΦ(Xi) =: hi,

where Φ denotes the trainable parameters in the network and h
is the dimension of the latent space. The trainable parameters
Φ can be either initialized from scratch or be transferred
from models trained on other large-scaled datasets, e.g., the
ImageNet dataset.

With the class label information, a triplet is defined to
consist of an anchor sample XA

i , a positive sample XP
i , and a

negative sample XN
i , where the anchor is of the same class as

the positive and the negative is not. However, in a regression
problem, the target variables cannot define the triplets directly
since they are continuous values. To mitigate this, we propose
to categorize the target variables into classes to generate
triplets in DML. It can also be viewed as a coarse pre-training
step before the final fine-tuning from a learning perspective.
Concretely speaking, we categorize target variables according
to their binning in the histogram for univariate regression tasks
and apply K-means clustering to find a class label for the target
variables in multivariate regression tasks.

During training, minimizing the triplet margin loss makes
the anchor-positive distance smaller than the anchor-negative
distances by a certain margin [45]. Formally, the loss function
is defined as

Jtriplet =
n∑

i=1

[
d(hA

i ,h
P
i )− d(hA

i ,h
N
i ) + α]+, (4)

where d(·, ·) is a distance metric, e.g., the Euclidean distance,
α is the value of a pre-defined margin, and [·]+ only takes
the positive part of the variable. Also, triplet selection is
an important step to get fast convergence of the training
since the network only gets gradients from the triplets having
positive values in Equation (4). Within each mini-batch, we
pick negative samples whose distance to the anchor is larger
than the anchor-positive distance (within a margin of α). That
means we have

0 < d(hA
i ,h

N
i )− d(hA

i ,h
P
i ) < α,

which are regarded as semi-hard examples in [45].
To find an appropriate number of epochs for the pre-

training, we take advantage of early stopping methods, which
terminate the training automatically by monitoring specific
metrics derived from the validation set. Here, we use the metric
Mean Average Precision at R (MAP@R), a more informative
evaluation metric since it combines the ideas of Mean Average
Precision and R-precision [36].

We argue that the training objective of the DML agrees with
the paradigm of a GP regression using localized kernels, which
is to interconnect the similarity of data samples in the target
space to the similarity in their input spaces. Since GP cannot
directly operate in the raw pixel space, a mapping function
that preserves the similarity from the target space to the latent
space would provide the GP with an ideal input space.



C. End-to-end Fine-tuning Deep Kernel Learning

In this section, we elaborate our proposed method in Al-
gorithm 1 by inversely joining the modules that have been
introduced in the last two sections.

Algorithm 1: Fine-tuning Deep Kernel Learning
Input: An image dataset of the form {Xi, yi}ni=1.
Output: A fine-tuned DKL model for regression

1 if Transfer is True then
2 Φ← ΦImageNet

3 end
4 switch Pre-training is DML do
5 Generate triplets {XA

i ,X
P
i ,X

N
i }

6 Φ← argminΦ Jtriplet(Φ)
7 end
8 switch Pre-training is CAE do
9 Φ,Ψ← argminΦ,Ψ JCAE(Φ,Ψ)

10 end
11 Initialize the inducing points {Z|zinit

i = fΦ(Xi)}
12 Φ,Θ← argmaxΦ,Θ LPPGP(Φ,Θ)
13 return Φ,Θ

Depending on whether we want to reuse the model trained
on the ImageNet dataset, we will initialize the parameters in
the backbones from the transferred model or from scratch
(line 2). If we use DML as pre-training, we first categorize the
target variables to generate triplets with the class information
(line 5). Then the backbones are trained with triplet margin
loss in Equation (4) (line 6). On the other hand, if we use CAE
as pre-training, the parameters in the encoder and decoder are
trained jointly against the CAE loss in Equation (3) (line 9),
where the encoder will be used as the backbone in later steps.
After the pre-training, the backbone is used to initialize the
inducing points with a subset of the image samples (line 11).
Therefore, it is worth highlighting that the pre-training step
affects the parameters in the neural network and the parameters
in the SVGP-based output layer. Finally, the fine-tuning step
is done w.r.t. the respective ELBO objective, where we use
the PPGP objective in Equation (2) as an example (line 12).

IV. EXPERIMENTS

A. Datasets and Implementation Details

We have conducted experiments with two different datasets
to validate our proposed methods. As an example for univariate
regression tasks, we included the Bone Age Prediction (BAP)
task from the Radiological Society of North America Pediatric
Bone Age Machine Learning Challenge [47], [48]. In this
dataset, there are 14, 236 hand radiographs, where the target
variable is defined as the bone age of pediatric patients under
five years old. In addition, we included the lesion localization
(LL) task from the DeepLesion dataset [49] as an example
for the multivariate regression problem. In the original dataset,
there are 32, 120 axial computed tomography (CT) slices from
4, 427 unique patients. Together with the tag information from
LesaNet [50], we retrieve 7, 310 slices for the lesion type

Month: 180
Location:

(0.57, 0.46, 0.60, 0.49)

Fig. 3. An example for the task of Bone Age Prediction (left) and Lesion
Localization (right).

of lung, where the task is to localize the lesion in a given
CT image. The target is in the format of (x1n, y1n, x2n, y2n),
where x1n, y1n, x2n, y2n denote the normalized x-top-left,
y-top-left, x-bottom-right, and y-bottom-right, respectively.
Fig. 3 shows examples for the task of BAP and LL.

The CNN-related models are built using the PyTorch pack-
age [51], where the models with GP methods are imple-
mented with the help of the GPyTorch package [52]. We
conducted cross-validations (CV) for both tasks with 90%
samples extracted in the datasets, where hyperparameters are
tuned according to the performance on the validation set. The
remaining unseen 10% samples constitute the test set, from
which the results reported in the following sections are com-
puted. Common data augmentations, including random crop,
rotate, and horizontal flip, are applied. Due to the relatively
small size of the datasets, the backbone of ResNet18 and
DenseNet121 are chosen in all experiments. Related scripts2

of the work will be published to improve the reproducibility.

B. Evaluation Approaches and Baselines

Due to the probabilistic nature of our proposed model, we
considered two lines of evaluation approaches in the experi-
ments: the performance of point estimates and the evaluation
of predictive variances. We used the well-known Root Mean
Squared Error (RMSE) to reflect the prediction performance
for the former, where only the mean predictions of the pro-
posed model are involved in the evaluation. For the latter, we
included a novel method to validate the meaningfulness of the
predictive uncertainty, namely a quantile performance (QP)
plot. Intuitively speaking, a good uncertainty-aware model
should demonstrate better performance together with higher
confidence in its predictions and vice versa. Any uncertainty-
aware regression model that produces point estimates and
predictive variances can be evaluated against this criterion.

Given an uncertainty-aware model f(·) and its predictive
distribution fi ∼ N (µi, σ

2
i ), we first sort all predictive vari-

2Related scripts see https://github.com/ZhiliangWu/mDKL.



ances in an ascending order {σ2
i | σ2

i ≤ σ2
i+1, i ∈ {1, . . . , n}}

and then compute K quantiles denoted as q1, . . . , qK .
Second, we compute the RMSE evaluation3 of the subset of

predicted point estimates ŷi := µi, whose paired variances σ2
i

are smaller than or equal to each of the k-th quantile values
of k ∈ {1, . . . ,K}:

Performancek := RMSE({(yi, ŷi)|∀σ2
i ≤ k-quantile}),

where (yi, ŷi) denotes the evaluation pair. By plotting the
performance value on the y-axis against the corresponding
quantile value k on the x-axis, a monotonically increasing
line is expected.

To study the point estimate performance of the SVGP-based
output layers, models having the same backbone but with a lin-
ear layer, which is optimized directly w.r.t. MSE, are included
as baselines. Besides, when investigating the effects of pre-
training between various representation learning methods, the
models without any pre-training serve naturally as baselines.
For the performance of predictive variances, we included MC
Dropout [10], a popular method for augmenting uncertainty
in the neural networks, as a baseline. In MC Dropout, a
dropout layer [53] is added before each layer in the network.
In our experiments, we used the default dropout setting for
DenseNet121 with a dropout rate of 0.2 during training and
testing, whereas dropout layers with the same dropout rate
are added after each of the four layers of residual blocks in
ResNet18. The predicted value and predictive variances are
computed by performing 50 stochastic forward passes through
the network as suggested in [53].

C. Evaluation on the Bone Age Prediction

1) Results on Point Estimates: Tab. I demonstrates the per-
formance of the proposed method with DenseNets121 on the
univariate regression task, Bone Age Prediction. Our proposed
models with SVGP-based output layers deliver competitive
or, in most cases, even better performances compared to
common architectures with linear layers. Overall, the proposed
model with SVGP output layers using transfer learning and
pre-trained with DML demonstrates the best performance.
In addition, significantly superior performance is found on
models using the parameters transferred from models trained
on the ImageNet dataset, which holds under all pre-training
variants. Comparing the models using transfer learning w.r.t.
different pre-training methods (upper part in Tab. I), we see
an improvement when the model is first pre-trained with
DML, whereas the pre-training with CAE does not improve
the performance. However, for the models without transfer
learning (lower part in Tab. I), both DML and CAE enhance
the performance of the models, whereas CAE shows a better
pre-training performance than DML. As a reference, [48]
reports 10.44 and 7.8 as RMSE values on 200 test samples
from human reviewers and model predictions, respectively.

2) Results on Predictive Variances: We include the models
with transfer learning but without any pre-training for the

3This could be any metrics for evaluating point estimates.

TABLE I
BONE AGE PREDICTION WITH DENSENET121

Output
Layer

Transfer
Learning

RMSE
(No pre-training)

RMSE
(DML)

RMSE
(CAE)

Linear* Yes 12.118± 0.277 11.667± 0.231 14.076± 0.281

SVGP† Yes 11.697± 0.102 11.440± 0.132 13.536± 0.279

PPGP† Yes 11.679± 0.061 11.529± 0.089 13.694± 0.274

Linear∗ No 19.934± 0.246 15.805± 0.157 15.340± 0.390

SVGP† No 17.723± 0.298 15.832± 0.284 15.323± 0.411

PPGP† No 18.341± 0.234 16.084± 0.336 15.752± 0.352

*Common architectures.
†With our proposed model.
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Fig. 4. Quantile Performance for the Bone Age Prediction with DenseNet121

QP plot in Fig. 5, where solid lines and error bars denote
the means and standard deviations across different CV splits.
A clear, monotonically increasing trend is observed in our
proposed models with PPGP output layers and the models with
MC Dropout. The line of PPGP is located underneath the MC
Dropout, indicating better performance. In contrast, the models
with SVGP output layers show a monotonically decreasing
trend w.r.t. the quantile of the predictive variance. The models
with PPGP output layers have an RMSE of 9.476 ± 0.200
(predictive variances at q = 20%) for the samples they are
more confident with, which is a relatively large improvement
compared to the values reported in Tab. I.

3) Discussion: The superior performance of models with
SVGP-based output layers is expected since the ELBO ob-
jective is a proxy for the log marginal likelihood objective,
which is a generalization to MSE in linear regression. The
improvements based on transfer learning conform to its pop-
ularity in the computer vision community, which validates
the hypothesis that reusing the knowledge from large-scale
datasets could help solve a new problem even with domain
shift. For pre-training with DML, the models are first trained
to embed samples with similar targets into nearby regions,
which would be a helpful initialization for the inducing points
and non-convex optimization in neural networks. Therefore,
we observe a positive contribution from DML to the model
performance. For the pre-training with CAE, the goal is to
learn a compressed representation, which will be recovered
in another decoder network. From the experimental results,



such unsupervised representation learning would improve the
performance if the model is trained from scratch but may de-
teriorate the knowledge transferred from large-scale datasets.
It indicates a possibly higher correlation of the current task to
the ImageNet classification than the compression task from
CAE, which could be attributed to the large number of
training samples in the ImageNet dataset. It is also worth
mentioning that we also conducted the same experiments with
the ResNet18 backbone, where similar results are observed.
More details can be found in Appendix A and B.

What makes our proposed method appealing lies in the
probabilistic nature of its prediction. The principled predic-
tive variance from PPGP output layers is expected since 1)
the inducing points technique facilitates explicit modeling
of uncertainty, 2) the symmetric treatment of the predictive
variance is restored in the training phase compared with SVGP.
However, the good performance from MC Dropout also comes
with a considerable computational cost. Roughly speaking, the
inference time would be t times as much as our proposed
model, where t is the number of stochastic forward passes
for the inference. With t = 50, our experiment with 1424
test samples requires an inference time of 1777.04 seconds
(almost half an hour) for the MC Dropout method, whereas our
SVGP-based approach takes only 42.90 seconds. With more
samples or more advanced backbone structures, the time cost
will be more expensive for the MC Dropout method. These
observations indeed motivate the application of our proposed
models with PPGP output layers when meaningful predictive
variances and low time complexity come to a higher priority
in a real-world system.

D. Evaluation on the Lesion Localization

1) Results on Point Estimates: Tab. II shows the perfor-
mance of our proposed method with DenseNet121 on the
multivariate regression task, Lesion Localization. Similar to
the task of BAP, our proposed models with SVGP-based
output layers have mostly better performance than the common
architectures with linear layers, and models with transfer
learning outperform the ones without it by a large margin.
On the whole, the proposed model with PPGP output layers
demonstrates the best results under all settings. The difference
lies in the performance with pre-training methods. Both pre-
training methods only improve the performance in the settings
without transfer learning.

2) Results on Predictive Variances: Due to the multivariate
setting in this task, the mean of the predictive variances of
different target variables is first computed before quantifying
the predictive variances. Like the BAP task, a monotonically
increasing trend is observed in models with PPGP and MC
Dropout. The line of PPGP overlaps mostly with the one with
MC Dropout, indicating relatively similar performance. In con-
trast, models with SVGP output layers deliver an almost flat
trend w.r.t. the quantiles of the predictive variance. The models
with the PPGP output layers have RMSE of 0.046±0.012 for
the evaluation pairs they are more confident with (predictive

TABLE II
LESION LOCALIZATION WITH DENSENET121

Output
Layer

Transfer
Learning

RMSE
(No pre-training)

RMSE
(DML)

RMSE
(CAE)

Linear* Yes 0.102± 0.002 0.101± 0.002 0.102± 0.003
SVGP† Yes 0.099± 0.003 0.101± 0.003 0.104± 0.004
PPGP† Yes 0.098± 0.002 0.098± 0.002 0.099± 0.002

Linear∗ No 0.116± 0.001 0.114± 0.003 0.114± 0.002
SVGP† No 0.118± 0.002 0.114± 0.003 0.112± 0.003
PPGP† No 0.115± 0.002 0.111± 0.005 0.110± 0.002

*Common architectures.
†With our proposed model.
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Fig. 5. Quantile Performance for the Lesion Localization with DenseNet121

variance at q = 20%), which is less than one-half of the ones
reported in Tab. II.

3) Discussion: Most observations and discussions in the
univariate regression still hold in the multivariate task. The
only difference lies in the performance of DML, where it
does not improve the performance in the setting with transfer
learning. The smaller size of the dataset compared to the one in
the BAP task could be one possible reason. Another possible
explanation is that the task’s multivariate nature makes it hard
to define a suitable space for DML to facilitate DKL. Further
improving the DKL performance in a multivariate setting of
DML would be an exciting direction for our future work. Like
the BAP task, we also conducted the same experiments with
the backbone of the ResNet18. More details can be found in
Appendix A and B.

V. CONCLUSIONS

This manuscript addresses the challenge that deep neural
networks (DNNs) are often unable to provide uncertainty
estimates for their predictions in regression tasks. Especially
in the healthcare domain, this issue could prevent the further
application of DNNs. We propose a model that consists of
a deep Convolutional Neural Network (CNN) and a sparse
Gaussian Process (GP). The former part serves as a trainable
feature extractor that embeds raw images into a latent space.
This enables the latter part to model the similarity of all



sample pairs with localized kernels more effectively in order
to produce a predictive distribution for each data sample.

We show that such an architecture can be trained in an end-
to-end fashion using stochastic gradient descent (SGD). We
also analyzed multiple ways to boost the performance of such
a model with different initialization and pre-training methods.
Our approach is by no means limited to Convolutional Neural
Networks, but could be generalized to other kinds of neural
networks that best fit the nature of the data. We also observe
a new specific challenge in this setup: We observe that
randomly initialized inducing points in a sparse GP cause
the prediction to degenerate to its prior when it consumes
outputs from CNN backbones. We propose a simple solution
that could also encourage further research in the task of jointly
learning representations and GPs. Our experiments on the
Bone Age Prediction and Lesion Localization tasks show that
the proposed model delivers mostly better performance in
terms of point estimates if compared to the baselines with
a linear output layer. More importantly, we show that our
model’s prediction performance increases hand-in-hand with
its predictive certainty. In other words, given a difficult test
sample, our model can realize and communicate that the pre-
diction thereof might be less trustworthy by generating a larger
predictive variance. Finally, our model requires significantly
less computational cost than popular MC Dropout methods,
which motivates its usage in real-world online applications.

As future work, we are interested in studying the integration
of multiple sparse GPs to deal with different types of input
sources and model the relations between outputs. In addition,
a combination of the interpretation using our uncertainty-
aware model with the explainability methods like various
saliency methods [54], [55] would be an exciting direction
for exploration.
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APPENDIX

A. Results on Point Estimates using ResNets

TABLE III
BONE AGE PREDICTION WITH RESNET18

Output
Layer

Transfer
Learning

RMSE
(No pre-training)

RMSE
(DML)

RMSE
(CAE)

Linear∗ Yes 13.131± 0.129 12.419± 0.098 13.842± 0.283

SVGP† Yes 12.632± 0.149 12.567± 0.051 13.375± 0.151

PPGP† Yes 12.899± 0.114 12.658± 0.048 13.640± 0.292

Linear∗ No 19.766± 0.134 16.533± 0.138 16.849± 0.275

SVGP† No 19.090± 0.286 16.147± 0.264 16.641± 0.275

PPGP† No 20.166± 0.371 16.986± 0.196 16.469± 0.222

TABLE IV
LESION LOCALIZATION WITH RESNET18

Output
Layer

Transfer
Learning

RMSE
(No pre-training)

RMSE
(DML)

RMSE
(CAE)

Linear* Yes 0.110± 0.003 0.114± 0.001 0.111± 0.003
SVGP† Yes 0.102± 0.002 0.107± 0.001 0.106± 0.003
PPGP† Yes 0.103± 0.001 0.104± 0.001 0.103± 0.002

Linear∗ No 0.148± 0.003 0.137± 0.002 0.123± 0.002
SVGP† No 0.129± 0.002 0.131± 0.001 0.121± 0.002
PPGP† No 0.133± 0.002 0.134± 0.002 0.119± 0.002

*Common architectures.
†With our proposed model.

B. Results on Predictive Variances using ResNets
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Fig. 6. Quantile Performance for tasks of Bone Age Prediction (left) and
Lesion Localization (right) using ResNet18 as the backbone in our model
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Abstract

Recurrent neural network based solutions are increasingly being used in the analysis
of longitudinal Electronic Health Record data. However, most works focus on prediction
accuracy and neglect prediction uncertainty. We propose Deep Kernel Accelerated Failure
Time models for the time-to-event prediction task, enabling uncertainty-awareness of the
prediction by a pipeline of a recurrent neural network and a sparse Gaussian Process.
Furthermore, a deep metric learning based pre-training step is adapted to enhance the
proposed model. Our model shows better point estimate performance than recurrent neural
network based baselines in experiments on two real-world datasets. More importantly, the
predictive variance from our model can be used to quantify the uncertainty estimates
of the time-to-event prediction: Our model delivers better performance when it is more
confident in its prediction. Compared to related methods, such as Monte Carlo Dropout,
our model offers better uncertainty estimates by leveraging an analytical solution and is
more computationally efficient.

1. Introduction

Since the introduction of the Electronic Health Record (EHR), an exploding amount of
healthcare-related data has been collected in clinics. The physicians often become over-
whelmed by data volume and data complexity and may turn to data-driven clinical decision
support systems (Halpern et al., 2016; Tresp et al., 2016; Xiao et al., 2018). These solutions
often provide decision support in two ways. A prescriptive system generates action rec-
ommendations, such as medications and therapy plans, while a predictive system provides
physicians with a prediction of the outcome, given a decision. Such outcome could be, for
instance, the adverse events related to a specific therapy or the progression-free-survival
time after treatment. These predictions are often based on modeling the three-way interac-
tion between the outcome, the patients’ status, and clinical decisions recorded in historical
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data. In this work, we address the prediction of treatment outcome and propose a new
class of uncertainty-aware models that can communicate uncertainty to physicians. We
argue that such uncertainty estimates add transparency and trustworthiness to the clinical
decision support systems and encourage their application on even larger scales.

Due to the high-dimensional, sparse, and sequential nature of EHR data, simpler, more
transparent white-box models often fail to capture the complex interactions between the
target variable and input features. Meanwhile, recurrent neural network (RNN)-based so-
lutions have proven capable of addressing the longitudinal aspect in EHR data (Esteban
et al., 2016; Choi et al., 2017; Yang et al., 2017b; Purushotham et al., 2018; Wu et al.,
2020). These models apply RNNs to aggregate historical observations to produce an indi-
vidual and time-dependent representation of a patient. The last layer is then a linear map
from patient representation to the target variable representing, e.g., the predicted outcome
for the patient. The advantage of an RNN is twofold. First, it can handle records that vary
in length from patient to patient, as in the analysis of texts with varying lengths (Mikolov
et al., 2012). Second, the more advanced RNN variants such as long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and gated recurrent unit (GRU) (Chung et al.,
2014) are flexible in memorizing both long-term and short-term input features. Despite the
state-of-the-art predictive performance of the neural network (NN)-based methods, these
methods fail to provide reasonable uncertainty estimates of the predictions (Nguyen et al.,
2015). It is easier to address this issue in classification tasks, as the predicted probability
can be interpreted to reflect uncertainty, which leads to various calibration approaches, like
temperature scaling (Guo et al., 2017). However, for regression tasks—like the time-to-event
prediction task in our case—one has to provide a predictive distribution to address the un-
certainty estimates, which is rarely considered in vanilla NN-based solutions. In healthcare
applications, we would argue that uncertainty-awareness of the model is as important as
point estimate performance, since the uncertainty estimates would assist the physicians in
better interpreting the results from a black-box model (Begoli et al., 2019). If the model
provides a high uncertainty estimate for its prediction, the physicians would be more careful
about it and take a closer look at that case.

It is, however, not a trivial task to augment NNs with reliable uncertainty estimates.
Currently, popular choices to do so include MC Dropout methods (Gal and Ghahramani,
2016), Bayesian neural networks (Bishop, 2006) and deep ensembles (Lakshminarayanan
et al., 2017). Many variants of them involve repeated sampling procedures either during
training or during inference, which could become computationally expensive for large NNs.
In this work, we investigate the possibility of quantifying the predictive uncertainty by
applying Gaussian Processes (GPs). As a popular class of machine learning methods, GP
produces a predictive distribution instead of a single point estimate for each test sample. For
small datasets, GPs have proven to be flexible and data-efficient. However, GPs’ inclusion
of a large training dataset inevitably introduces large storage and computational complexity
(Rasmussen and Williams, 2005). With the recent advance of sparse GP techniques, the
computational complexity has been largely reduced (Liu et al., 2020). Motivated by the
desirable predictive distribution of GPs and the progress of sparse GPs, we propose in this
work a novel approach by integrating RNNs as feature extractors into GP-based predictive
models. Furthermore, we propose a deep metric learning (DML)-based pre-training method
to further improve the performance of the model.
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In the context of time-to-event prediction, our proposed model is closely related to the
Accelerated Failure Time (AFT) models (Prentice, 1978; Kalbfleisch and Prentice, 2002).
As one of the well-known models in survival analysis, the AFT models have shown promising
results, especially when, in an application, the direct prediction of survival time is more
important than hazard estimation. With our proposed method, we have augmented the
uncertainty estimates in the AFT models.

Generalizable Insights about Machine Learning in the Context of Healthcare

Neural networks offer powerful modeling ability to learn from EHR data, but often neglect
the uncertainty estimates in the predictions. Leveraging state-of-the-art sparse GPs, we
propose a method to integrate the uncertainty into the NN-based solutions for time-to-
event prediction tasks. Experiments on two real-world datasets show that the resulting
model can 1) scale very well to large datasets; 2) deliver improved performance regarding
point estimates; 3) offer reasonable predictive variances, which reflect the confidence of
the predictions and enhance the calibration of the model. The uncertainty estimates in our
model can help establish a trustworthy relationship with physicians since it expresses higher
confidence in more accurate predictions and vice versa.

2. Related Work

Predictive Modeling with EHRs To better capture the time-dependent information
of patients, many works have been proposed to model longitudinal EHR data, ranging
from earlier statistical methods like landmarking (Van Houwelingen, 2007), Joint Models
(Rizopoulos, 2011; Hickey et al., 2016), to more recent methods like Bayesian Nonparametric
Dynamic Survival (Bellot and Schaar, 2020). Meanwhile, RNN-based approaches have
proved to be very successful both for discrete medical events and continuous time-series
data. Esteban et al. (2016) applied sequence-to-sequence RNN models to predict discrete
medical events of patients suffering from kidney failure. Yang et al. (2017b) proposed many-
to-one RNN models to deal with discrete medical events and predict the therapy decision
for breast cancer. At the same time, Choi et al. (2017) applied models of similar structure
for the early detection of heart failure onset. For continuous time-series data, multiple
readings of individual signals are usually aggregated to reduce the high-resolution patient
data so that they can be better consumed by the neural networks, e.g., heart rate and blood
pressure in ICU time-series data (Johnson et al., 2016). With the aggregation method on the
ICU time series data, Purushotham et al. (2018) provided RNN-based benchmarks for the
mortality prediction, length-of-stay prediction, and ICD-9 code group prediction. Following
similar data pre-processing steps, Wu et al. (2020) presented RNN-based models to learn
the optimal treatment strategies for administering intravenous fluids and vasopressors. In
this work, we include EHR data with discrete medical events as well as the dataset with
continuous time-series measurements for the time-to-event prediction tasks to validate our
proposed model.

Survival Analysis with Neural Networks and Gaussian Processes As most pop-
ular approaches in survival analysis are based on generalized linear models, they have been
extended to nonlinear models, including NNs and GPs. Saul (2016) proposed chained GPs
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to model multiple parameters of the log-logistic likelihood in AFT models through the
latent functions of GPs. In addition, many GP-based methods are proposed to enhance
the Cox proportional hazards (CPH) model, including the Bayesian semi-parametric model
(Fernández et al., 2016) and deep multi-task Gaussian process DMGP (Alaa and van der
Schaar, 2017). For NN-based approaches, Yang et al. (2017a) combines tensorized RNN
model with the AFT model to predict progression-free survival (PFS) time. Kvamme et al.
(2019) proposes an extension of CPH models, CoxTime, by parametrizing the relative risk
function with NNs as well as modeling interactions between covariates and time. However,
most of these works focus on capturing the non-linearity between covariates to improve the
performance of point estimates. The uncertainty perspective of the prediction is rarely ad-
dressed. More recently, Chen (2020) proposed Deep Kernel Survival Analysis to learn kernel
functions for the conditional Kaplan-Meier estimator and enables subject-specific survival
time prediction intervals. The uncertainty is quantified by the prediction intervals. With
an emphasis on uncertainty-awareness, we explore in this work the time-to-event prediction
tasks with the AFT models using a combination of RNNs and GPs.

Exact Gaussian Process and Scalable Variational Gaussian Process with Neural
Networks Since the capacity of GPs grows with available training data, many works have
proposed possible solutions for both exact GP and sparse GP. Based on the efficient GP in-
ference using Blackbox Matrix-Matrix multiplication from Gardner et al. (2018), Wang et al.
(2019) realized exact GP training on over a million training samples by taking advantage
of multi-GPU parallelization. Meanwhile, various works have been proposed to approxi-
mate the original GPs to save computational cost, including some early efforts, such as the
Bayesian committee machine (BCM) (Tresp, 2000), the Nyström methods (Williams and
Seeger, 2001), the Fully Independent Training Conditional (FITC) Approximation (Snelson
and Ghahramani, 2006), Variational Free Energy (VFE) (Titsias, 2009), the more recent
Scalable Variational Gaussian Process (SVGP) (Hensman et al., 2013) and Parametric Pre-
dictive Gaussian Process (PPGP) Regressor (Jankowiak et al., 2020) (more details see Sec.
3.2). In addition, the idea of combining sparse GPs with neural networks also received much
attention, where the Deep Kernel Learning (DKL) (Wilson et al., 2016) and GP hybrid deep
networks (GPDNN) (Bradshaw et al., 2017) are the ones most related to our work.

3. Methods

This section first discusses the RNN-based feature extractors to learn representations from
the patients’ static and sequential information. The resulting latent representations are
used as inputs for the time-to-event prediction task. We will elaborate on our proposed
model, which combines the GP-based models with AFT models. Afterward, a DML-based
supervised pre-training method is presented to enhance the performance of the proposed
model.

3.1. Recurrent Neural Networks as Feature Extractors

EHR data typically consist of static features and sequential features, both of which are
important for the time-to-event prediction tasks. We regard the background information
of each patient as static features xsta

i ∈ Rnsta . We use i,nsta to denote the patient sample
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index and the number of static features, respectively. In addition, features observed at
all time-steps constitute the sequential feature matrix Xseq

i = [x0
i ,x

1
i , . . . ,x

ti
i ]> ∈ Rti×nseq ,

where ti is the number of observed time-steps for the i-th patient sample and nseq denotes
the number of sequential features. Due to the high sparsity or redundancy in raw features
spaces, it has been shown to be beneficial to first apply a (non-linear) embedding layer
on the raw features to learn the static hidden representation hsta

i and sequential feature
embeddings Xseq emb

i (Esteban et al., 2016). Formally, we have

hsta
i = g1(Ax

sta
i ) ∈ Rnsta repr

Xseq emb
i = g2(X

seq
i B) ∈ Rti×nseq emb

where A ∈ Rnsta repr×nsta ,B ∈ Rnseq×nseq emb are embedding matrices, g1(·), g2(·) are activa-
tion functions like tanh(·), nsta repr, nseq emb denote the dimension of the static hidden repre-
sentations and the sequential feature embeddings, respectively. Afterward, more advanced
variants of RNNs, LSTM or GRU, are used to encode the sequential feature embeddings
Xseq emb

i into sequential latent representations hseq
i . Since we are mainly interested in mod-

eling the time-to-event, only the last hidden states from LSTM/GRU are involved as inputs
in the down-streaming tasks. Formally, we have

hseq
i = RNN(Xseq emb

i ) ∈ Rnseq repr ,

where nseq repr is the dimension of sequential hidden representations and RNN(·) could be
an LSTM or GRU.

LSTM/GRU

LSTM/GRU

Figure 1: Illustration of the RNN-based feature extractor: An (non-linear) embedding layer
is first involved in learning the sequential feature embeddings, which are then fed
into RNN-based models to encode the sequential hidden representations. These
are then concatenated with the static hidden representations. The complete hid-
den representation is expected to encode all relevant patient information and
serves as abstract covariates for the down-streaming time-to-event prediction task.
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The complete structure of the feature extractor is shown in Fig. 1. Similar to the encoder
part in Cho et al. (2014), this procedure is especially appealing for the patients with different
observed time-steps, as it is theoretically capable of storing all relevant information in the
medical events with variable lengths but remains a consistent form of representations.

3.2. Scalable Variational Gaussian Processes for Time-to-Event Prediction

From the last section, we have learned the static hidden representation hsta
i and the sequen-

tial hidden representation hseq
i through RNN-based feature extractors. By concatenating

them, we get the complete hidden representation as

hi = [hsta
i ;hseq

i ] ∈ Rnsta repr+nseq repr ,

which can be viewed as abstract covariates of patients in a latent feature space.
The class of Accelerated Failure Time (AFT) models is a general class of models, where

the covariates of the patients are assumed to act multiplicatively on the time-scale (Collett,
2015). Compared to the semi-parametric Cox proportional hazards (CPH) models, the AFT
models take advantage of their parametric nature and include a wider range of survival time
distributions. Formally, with the time-to-event target variable zi, the AFT models predict
its logarithm as log zi := yi = β>hi + εi, where β>hi is the linear predictor with the

(trainable) parameter vector β, εi
i.i.d.∼ Dε denotes the error term which is specified by a

particular probability distribution Dε. Common choices for Dε include Normal, Weibull
and Logistic distributions, which correspondingly specifies the target variable zi to be log-
normal, log-weibull and log-logistic distributed, respectively. In this work, we assume our
target variable of interest to follow a log-normal distribution. In other words, we have

correspondingly εi
i.i.d.∼ N (0, σ2obs). Furthermore, we propose to replace the linear predictor

β>hi with Gaussian Process posterior prediction to enable uncertainty-aware predictions.
In the following, we shall introduce this approach in detail.

As shown in Fig. 2, after we obtain the hidden representations hi from the feature
extractor fΦ(·) (details see Sec. 3.1), these are used as abstract patient covariates for the

Figure 2: Graphical model of Deep Kernel Accelerated Failure Time models in plate nota-
tion. Nodes represent variables, where shaded ones are observable and non-shaded
ones are latent. Plates indicate the repetition of the subgraph.
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subsequent GP-based models gΘ(·) to generate predictive distribution yi ∼ N (µi, σ
2
i ), the

logarithm of the target variable. We denote Φ and Θ as the trainable parameters in
the RNN-based feature extractor and the GP-based predictive model, respectively. Since
we take advantage of neural networks with GP-based models as an advanced version of
AFT models, we name it Deep Kernel Accelerated Failure Time (DKAFT) models. In the
following, we will discuss different GP-based models in our proposed method.

In regression, yi is a noisy observation of the GP function value fi = f(hi), which is
assumed to behave a priori according to

p(f |h1, . . . ,hn) = N (0,K),

where f = [f1, . . . , fn]> ∈ Rn is a vector of GP function values andK ∈ Rn×n is a covariance
matrix, whose entries are given by the covariance function kij = k(hi,hj). The choice of
the covariance function reflects the prior knowledge of the generative process of the model,
where a Radial Basis Function (RBF) kernel is commonly used. There are some important
hyper-parameters in the covariance function, e.g., the length-scale and signal variance in the
RBF kernel, which can be learned through maximizing the log marginal likelihood defined
as

LExactGP = −1

2
y>
(
K + σ2obsI

)−1
y − 1

2
log
∣∣K + σ2obsI

∣∣− n

2
log 2π. (1)

With the optimized parameters, the prediction of a test sample f∗ can be understood as
computing the conditional probability of the test location given all values in the training
dataset. Formally, the GP model outputs a predictive distribution as

f∗ ∼ N (k>∗
(
K + σ2obsI

)−1
y, k∗∗ − k>∗

(
K + σ2obsI

)−1
k∗), (2)

where k∗ = [k(h1,h∗), . . . , k(hn,h∗)]> ∈ Rn denotes the covariance function values between
the training inputs and the test input h∗. Please note that, in contrast to the original AFT
formulation, the covariates hi do not influence the logarithm of the target variable directly
in GP. Instead, the accelerating effect is realized via the covariance function.

Equation 1 and Equation 2 reveal the training and inference step for our proposed
DKAFT model with an Exact GP output layer. However, the Exact GP cannot scale
well to a large-scale dataset due to the O(n3) computational complexity from the inverse
operations of the large covariance matrix K.

A tremendous amount of work has been proposed to address the scalability issue in the
Exact GP, where the techniques of inducing points with variational inference have found
most interest (Quinonero-Candela and Rasmussen, 2005). In short, the inducing points
constitute a “summary” dataset, which is learned to generalize the original dataset to
reduce the O(n3) computational complexity. They consist of inducing inputs {ui}mi=1 =: U
(corresponding to {hi}ni=1) and inducing variables {vi}mi=1 =: v (corresponding to {fi}ni=1),
where m� n. In the context of our DKAFT model, the inducing inputs refer to a summary
of the abstract patient covariates in the latent space. The learning of the inducing points
is facilitated by variational methods under different approximation assumptions, e.g., the
prior approximation and posterior approximation (Liu et al., 2020).

Among various GP approximations, the Scalable Variational Gaussian Process (SVGP)
proposed by Hensman et al. (2013) reduces the computational complexity to O(m3) and
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makes the training amenable to stochastic gradient descent (SGD)-based methods. More
concretely, the variational distribution q(v) of the inducing variables is assumed to follow a
multivariate Normal distribution N (m,S) in SVGP. Following the notation in Jankowiak
et al. (2020), instead of the log marginal likelihood objective in an Exact GP, we optimize
the parameters by maximizing the Evidence Lower BOund (ELBO)

LSVGP =

n∑

i=1

{
logN

(
yi | µf (hi) , σ

2
obs

)
−
σ2f (hi)

2σ2obs

}
−KL(q(v)‖p(v)) (3)

and the predictive distribution for each sample is

fi ∼ N (µf (hi), σ
2
f (hi)) = N (k>i K

−1
vvm, kii − k>i K−1vvki + k>i K

−1
vvSK

−1
vvki). (4)

Kvv ∈ Rm×m is the covariance matrix of the inducing variables, whose entries are computed
based on inducing inputs as kvvij = k(ui,uj), ki = [k(u1,hi), . . . , k(um,hi)]

> ∈ Rm is the
covariance function values between all inducing inputs with the sample input hi, and KL(·‖·)
denotes the Kullback–Leibler divergence between two distributions.

Both training and inference of SVGP in Equation 3 and Equation 4 are more computa-
tionally tractable, since they only involve the inducing points instead of the whole dataset
as in Exact GP. We can therefore take advantage of this formulation for large-scale datasets.
With LSVGP as an objective, we have our DKAFT model with an SVGP output layer.

More recently, Jankowiak et al. (2020) found that the predictive uncertainty from SVGP
is dominated by the input-independent observational noise σ2obs, whereas it is indeed the
input-dependent function variance σ2f (hi) that makes the GP posteriors attractive. Differ-
ent from the SVGP objective in Equation 3, the Parametric Predictive Gaussian Process
(PPGP) Regressor takes advantage of the predictive distribution in Equation 4 and em-
beds it directly in the objective using Maximum Likelihood Estimation (MLE) methods.
Formally, the objective in PPGP is defined as

LPPGP =

n∑

i=1

logN
(
yi | µf (hi) , σ

2
obs + σ2f (hi)

)
−KL(q(v)‖p(v)). (5)

With LPPGP as a training objective, we have our DKAFT model with an PPGP output
layer.

The objectives introduced above are defined for samples with observed time-to-event.
For right-censored cases, we can take advantage of the parametric predictive distribution
in Equation 4 to compute the survival function, whose logarithm contributes to the final
objective together with the ELBO objective. Such an optimization objective is also used
in AFT models, where the non-censored cases contribute to the objective through their
respective probability distribution function and the censored ones through the survival
function (see Collett, 2015, Equation 5.9). Formally, the survival function of the log-normal
distribution in our DKAFT model is

S(z|hi) = 1− Φ

(
log z − µf (hi)

σf (hi) + σobs

)
,

where Φ(·) is the cumulative distribution function of a standard normal distribution.
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3.3. Deep Metric Learning as Supervised Pre-training

The proposed architecture with RNNs as feature encoders and sparse GPs as predictive
models is trainable in an end-to-end fashion with gradient descent. The free parameters
include parameters in RNNs, the inducing points, and hyper-parameters in the covariance
function. In our experiment, we realize that training such architecture from scratch could
be challenging. Given an RNN and inducing points that are both randomly initialized,
the covariance matrix in GP is also random. This often causes the length scale parameter
in the RBF kernel to shrink to extremely small values, and the GP would then degrade
to its prior, correspondingly. To alleviate such problems, we find the initialization of the
inducing points to be an important step for obtaining good models. More specifically, we
find that the training always fails if we initialize the inducing inputs with random vectors.
On the other hand, initializing the inducing points with latent representations from the
RNN-based feature extractor always shows good performance, even though the parameters
in the feature extractor are initialized randomly. Formally, we get the initial inducing inputs
as

uinit
i = hinit

i = fΦinit
(xsta

i ,Xseq
i ),

where a random subset of the training inputs {xsta
i ,Xseq

i }mi=1 is involved. To this end, we
conjecture that a pre-training step on the feature extractor would boost the performance of
our DKAFT model. Since many covariance functions, e.g., RBF kernels, take the distance
between samples as input, it would be beneficial if the feature extractor generates abstract
covariates in well-clustered latent spaces, where the samples with similar target variables
are closer to each other. We propose that one could achieve such a beneficial configuration
via Deep Metric Learning (DML), which is initially proposed for vision-related tasks like
face verification (Schroff et al., 2015) and person re-identification (Hermans et al., 2017).
What DML learns is to represent samples in a latent space that retains the similarity in
the target variables.

In DML, pair loss or triplet loss provides the foundation for embedding samples us-
ing twin networks, which refers to the replications of the same feature extractor network.
Various losses have been proposed to improve the embedding from different perspectives, in-
cluding contrastive loss (Hadsell et al., 2006), triplet margin loss (Weinberger et al., 2006) or
the more recent Signal-To-Noise Ratio loss (Yuan et al., 2019). More specifically, a triplet
is defined with the class information to consist of an anchor, a positive, and a negative
sample, {xsta

i ,Xseq
i }A/P/N, where the anchor is of the same class as the positive and the

negative is not. As there are no class labels in time-to-event prediction, we propose to
categorize the target variables according to their binnings in the histogram to facilitate the
triplet generation. In the context of our DKAFT model, we train the RNN-based feature
extractor using, e.g., triplet margin loss (Schroff et al. (2015))

Jtriplet =

n∑

i=1

[
d(hA

i ,h
P
i )− d(hA

i ,h
N
i ) + α]+,

where d(·, ·) is a distance metric, like Euclidean distance, hA
i ,h

P
i ,h

N
i are the abstract covari-

ates of anchor, positive, and negative samples, α is a predefined margin value, and [·]+ takes
the positive part of the variable. From the GP perspective, it is the covariance function
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that defines the “similarity” between samples, the choice of a specific loss in DML should
therefore take it into consideration.

To find a suitable training epoch for the pre-training, we use an early stopping technique,
which terminates the training automatically if the monitored metric does not improve over
a given number of epochs. Mean Average Precision at R (MAP@R) proposed in Musgrave
et al. (2020) is used as the monitored metric on the validation set, which combines the
metrics of Mean Average Precision and R-precision.

To conclude, we propose to apply an RNN-based feature extractor to learn fix-sized
latent representations from patient trajectories of variable lengths. The feature extrac-
tor can be randomly initialized or pre-trained with our proposed DML-based approach.
The DKAFT model is trained end-to-end against (sparse) GP objectives using SGD-based
methods and produces predictive distributions.

4. Cohort

4.1. Data Extraction

We have included two datasets to validate the effectiveness of our proposed method. In
both datasets, we treat observed time-to-event as our target variables.

The first dataset is provided by the PRAEGNANT study network (Fasching et al.,
2015), which focuses on patients suffering from metastatic and incurable breast cancer.
Based on a patient’s background information and medical history, we attempt to predict the
Progression-Free Survival time (PFS-PRAEGNANT), i.e., the number of days till the next
recorded progression. The raw data are hosted in a relational database system, secuTrial®,
and can be accessed under restrictions. After querying and preprocessing, we retrieved a
dataset of 1336 patient cases.

The second dataset comes from the Medical Information Mart for Intensive Care database
(MIMIC-III), a freely accessible database, which contains data including 53, 423 distinct In-
tensive Care Unit (ICU) admissions of adult patients between 2001 and 2012 (Johnson et al.,
2016). In this work, we consider a cohort of patients from MIMIC-III v1.4, who are older
than 15 years at the time of ICU admission. Besides, only the first admission of these pa-
tients is included to prevent potential information leakage in the analysis. Based on the data
collected during the first 48 hours, we attempt to predict the length-of-stay (LoS-MIMIC)
for each admission, i.e., the number of days between hospital admission and discharge from
the hospital. More specifically, we followed the scripts1 provided by Purushotham et al.
(2018) and extracted a dataset with 31, 986 patient admissions.

In both extracted datasets, all cases are with observed time-to-event. In case of the
MIMIC dataset, the patients were always supposed to leave the ICU and the PRAEGNANT
patients all have metastasis and were expecting multiple progressions.

4.2. Feature Processing

In the PRAEGNANT dataset, the static information includes 1) basic patient information,
e.g., age and height 2) information on the primary tumor, and 3) history of metastasis
before entering the study. In total, there are 26 features of binary, categorical, or numerical

1https://github.com/USC-Melady/Benchmarking_DL_MIMICIII
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type. After performing one-hot encoding on the binary and categorical features, we obtain
a feature vector xsta

i ∈ R114 for the static information with an average sparsity of 0.871.
The sequential information includes 4) local recurrence 5) metastasis 6) clinical visits 7)
radio-therapies 8) systemic therapies, and 9) surgeries. These events are observed with a
timestamp, and multiple events could happen at the same timestamp. After performing
binary-encoding on 26 sequential features, we extract a feature matrix Xseq

i ∈ Rti×188 for
the sequential information of each patient case, where ti denotes the length of the sequence
before the progression. The length of the sequences ti varies from 1 to 22 and is on average
6.42. The average sparsity of the sequential feature matrix is 0.973.

In the MIMIC-III dataset, the static information refers to the basic information during
the admission, e.g., age and admission type. After performing binary encoding on five static
features, we obtain a feature vector for each admission xsta

i ∈ R10. Moreover, the sequential
information refers to the continuously monitored measurements or prescriptions in the ICU
environment. They are sampled or aggregated every one hour to represent the patient
status at different time steps. 136 sequential features have been selected. Those features
are available for most patients. As a result, we extract a feature matrix Xseq

i ∈ Rti×136 for
the sequential information, where ti is 48 for all patient admissions. A complete list of the
chosen features can be found in Appendix A.

5. Experiments

5.1. Experimental Details and Evaluation Approaches

We conducted cross-validations (CV) for the PFS-PRAEGNANT and LoS-MIMIC predic-
tion tasks with 90% samples in the dataset. The validation set is used for tuning hyper-
parameters like, e.g., the dimension of the latent representations, weight decay, and training
epochs. As a result, we have 4, 32, 128 and 4, 64, 64 for the size of the static latent repre-
sentations nsta repr, sequential feature embeddings nseq emb, and sequential latent represen-
tations nseq repr in the PFS-PRAEGNANT and LoS-MIMIC prediction tasks, respectively.
The evaluation metrics reported in the following are all computed based on the remaining
unseen 10% samples of the dataset.

All our NN-based models are built with the PyTorch package (Paszke et al., 2019). The
GP-related methods are implemented with the help of the GPyTorch package (Gardner
et al., 2018). Related scripts2 are published to ensure the reproducibility of the work.

Since the target variable zi is assumed to follow a log-normal distribution, it is not
appropriate to measure the results using Root Mean Square Error (RMSE) in its original
scale. Therefore, we report the more robust metric of Median Absolute Deviation (MAD)
defined as MAD = mediani(|zi − ẑi|). In addition, we report the RMSE in the logarithmic

scale of the target variable, which is defined as RMSE =
√

1
n

∑n
i (yi − ŷi)2.

In addition to the point estimate performance, we also evaluate the meaningfulness
of the predictive variance σi of our proposed model as well as other uncertainty-aware
baselines using a Quantile Performance (QP) plot (Wu et al., 2021; Yang and Buettner,
2021). Intuitively, the predictive confidence generated by a model is only systematically
meaningful if the model assigns higher confidence to the more accurate predictions and lower

2https://github.com/ZhiliangWu/DKAFT
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confidence to the less confident ones. In the scope of our work, we interpret the predictive
variance as a form of confidence estimation, where smaller values correspond to higher
confidence. Therefore, the predictive variance from our model enables a formal evaluation
of such expected behavior. Concretely speaking, we extract the evaluation pairs {yi, ŷi}ni=1

(or {zi, ẑi}ni=1) for each quantile of the predictive variance of the model q ∈ { 1
Q ,

2
Q , . . . , 1},

where the corresponding predictive variance σ2i is smaller than or equal to the q-th quantile.
Formally, we have the performance in each quantile as

Performanceq := Metric({(yi, ŷi) or (zi, ẑi) | ∀σ2i ≤ q-th quantile}),

where Metric(·) could be MAD for zi or RMSE for yi. We plot the performance of each
quantile on the y-axis against the corresponding q values on the x-axis. For a model with
meaningful uncertain-awareness, a monotonically increasing line is expected in the QP plot.
Furthermore, a stronger correlation between the metric and confidence across the quantiles
suggest a better quantification of the predictive uncertainty.

Finally, we plot the (empirical) Cumulative Distribution Function (CDF) of the nor-
malized residuals to show how well our model is calibrated as a further evaluation metrics.
According to our normal distribution assumption on the logarithmic scale of the target
variable, it is expected to be close to the CDF of a standard normal distribution N (0, 1). In
addition, the Continuous Ranking Probability Score (CRPS), a popular calibration metric
for regression (Gneiting and Raftery, 2007; Jankowiak et al., 2020), is reported to have a
quantitative comparison.

5.2. Evaluation of the PFS-PRAEGNANT and LoS-MIMIC prediction

As weak baselines, we report the performance of standard Cox and AFT regression using
the R package survival (Terry M. Therneau and Patricia M. Grambsch, 2000; Therneau,
2020) with raw features aggregated w.r.t. the time axis. Such aggregation has been used in
Esteban et al. (2015) and Yang et al. (2017a), which turns out to be a reasonable solution
to deal with features with time-stamps by ignoring the order of the events.

To investigate the performance of different output layers as we discussed in Sec. 3, we
train all models with the same RNN-based feature extractor. Using a linear output layer
as our strong baseline (RNN+AFT ) (Yang et al., 2017a), we include the SVGP and PPGP
output layers for both prediction tasks, which are denoted as DKAFT (SVGP) and DKAFT
(PPGP), respectively. Thanks to the moderate size of the PRAEGNANT dataset, we also
have an ExactGP output layer for the PFS-PRAEGNANT prediction task, which we denote
as DKAFT (ExactGP). To validate our proposed initialization method, we pre-trained the
feature extractor using DML and then fine-tune the proposed model. In such a case, the
performance of models without pre-training naturally serves as the baselines. Note that,
for our DKAFT models, only the mean predictions are involved in the evaluation of point
estimates. Results are summarized in Tab. 1. For NN-based CPH baselines (Kvamme et al.,
2019), we report the results in Tab. 3 in Appendix C.

From Tab. 1 we can see that our DKAFT models demonstrate much stronger perfor-
mance compared to the Cox Regression and AFT Regression with aggregated features. For
the evaluation w.r.t. RMSE, our DKAFT models all outperform the corresponding strong
baselines, the RNN+AFT models. Tab. 2 shows the p-values of paired t-tests quantifying
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Table 1: Experimental results: MAD in the original scale (days) and RMSE in the logarithmic scale
for PFS-PRAEGNANT and LoS-MIMIC prediction tasks. Our DKAFT models outperform
the baselines, including Cox Regression, AFT regression, and RNN+AFT models. More
baselines in Appendix. C.

Progression-Free Survival Length-of-Stay
Method Pre-training MAD RMSE MAD RMSE

Cox Regression −∗ 200.800± 16.984 1.609± 0.054 2.727± 0.007 0.638± 0.0002
AFT Regression −∗ 206.065± 8.988 1.685± 0.080 2.742± 0.014 0.630± 0.0001

RNN+AFT None 150.918± 3.009 1.273± 0.019 2.476± 0.040 0.575± 0.003
DKAFT (ExactGP) None 144.622± 8.689 1.225± 0.022 −† −†

DKAFT (SVGP) None 154.237± 13.490 1.211± 0.020 2.428± 0.056 0.572± 0.003
DKAFT (PPGP) None 147.108± 6.284 1.220± 0.019 2.351± 0.021 0.563± 0.001

RNN+AFT DML 138.155± 7.496 1.267± 0.007 2.452± 0.057 0.568± 0.001
DKAFT (ExactGP) DML 134.422± 7.255 1.202± 0.012 −† −†

DKAFT (SVGP) DML 151.852± 11.305 1.221± 0.007 2.438± 0.079 0.567± 0.005
DKAFT (PPGP) DML 146.616± 17.109 1.195± 0.008 2.346± 0.042 0.557± 0.002

∗Not applicable to the method.
†Not possible due to the O(n3) computational complexity.

the performance improvement of our DKAFT models. In the task of PFS-PRAEGNANT
prediction, we can see our DKAFT models outperform RNN+AFT models significantly
(with a significant level α = 0.05). In contrast, only DKAFT (PPGP) models show signif-
icantly better RMSE performance in the LoS-MIMIC prediction task. For the evaluation
regarding MAD, our DKAFT (ExactGP) model performs best in the PFS-PRAEGNANT
prediction task, while it is DKAFT (PPGP) for the LoS-MIMIC prediction task. Mean-
while, we can observe a moderate improvement for most models pre-trained with DML
compared to those trained from scratch.

Table 2: p-values from paired t-tests to assess the significance of improvement achieved by
our DKAFT models, based on the RMSEs collected from multiple cross validations.
A two factor ANOVA on the effect of different model setups can be found in the
Appendix.B

No pre-training DML
Comparison candidates PFS LoS PFS LoS

DKAFT (ExactGP) vs. RNN+AFT 0.021 −∗ 2e-4 −∗
DKAFT (SVGP) vs. RNN+AFT 0.010 0.282 0.001 0.682
DKAFT (PPGP) vs. RNN+AFT 0.002 0.001 3e-4 3e-4

∗Not possible due to the O(n3) computational complexity.
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As discussed in Sec. 3, DKAFT models are trained by either optimizing the log marginal
likelihood objective or the variational approximation of it, which is essentially a generaliza-
tion to mean square error in linear regression. Therefore, improved performance is expected
as the GP-based output layers include inducing points during the training and inference
time, which implicitly facilitates integrating all possible linear models. Meanwhile, since
MAD is a more robust metric than RMSE regarding outliers, there are some performance
differences of the same model between these two metrics.

The superior performance of the DKAFT (SVGP) and DKAFT (PPGP) compared to
DKAFT (ExactGP) w.r.t. RMSE is a bit surprising since these models are essentially
approximations of the latter. We speculate that such phenomenon comes from the sparse
and high-dimensional features in the PRAEGNANT dataset, which results in redundant
or even repetitive patient covariates from the feature extractor. This makes the GP model
struggle to capture the correlation correctly. On the contrary, the inducing points in SVGP
or PPGP are not constrained by the raw input features and could avoid this coupling during
the optimization.

For the initialization with pre-training methods, DML helps attain a feature extractor,
which clusters samples with similar targets in nearby regions. Models with all output layers,
including linear layers, achieve moderate improvement. This can be attributed to 1) the
non-convexity nature of the log marginal likelihood objective or the ELBO objective with
deep neural networks, where a good starting point could offer advantages for the following
optimization procedure; 2) the good initialization of the inducing inputs generated by the
pre-trained feature extractor.

5.3. Evaluation of the predictive variances

Apart from improved performance for point estimates, the main advantage of the proposed
method lies in the uncertainty-aware nature of the model. As a baseline, we include MC
Dropout (Gal and Ghahramani, 2016), a well-known method for enabling uncertainty esti-
mates in neural networks. By adding a dropout layer (Srivastava et al., 2014) before each
weight layer, the resulting model is proved to be mathematically equivalent to a proba-
bilistic deep Gaussian Process. In our experiments, we followed the proposed method with
the suggested dropout rate of 0.2. The mean prediction and function variance are com-
puted from performing 50 stochastic forward passes through the network. Since QP plots
demonstrate unstable performance if the number of evaluation pairs in each quantile is too
small (like the test set for the PFS-PRAEGNANT prediction task with only 134 samples
in total), we only report the evaluation on the LoS-MIMIC prediction task in Fig. 3.

In Fig. 3 we visualize the quantile performance for MAD and RMSE, where the solid
line represents an average performance and the error bar for the standard deviation across
CV splits. We observe a strong monotonically increasing line in both metrics from our
DKAFT (PPGP) model. For the evaluation pairs that the model is more confident with,
e.g., ones corresponding to the predictive variances at quantile 10%, the MAD and RMSE
are 1.163±0.030 and 0.316±0.005, respectively. Such results correspond to only half of the
values reported in Tab. 1, indicating a significant improvement. Meanwhile, the DKAFT
(SVGP) model shows an increasing dependency only in MAD. For the models with MC
Dropout, there seems to be no performance difference between quantiles.
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Figure 3: Quantile MAD (left) and Quantile RMSE (right) in the y-axis against quantile
predictive uncertainty in the x-axis for the LoS-MIMIC prediction task. Our
DKAFT model with a PPGP output layer (red) shows the strongest increasing
trend in both MAD and RMSE. This indicates that the model is monotonically
more confident in predictions that are indeed closer to the ground-truths. We
emphasize that this is a desirable feature to expect from an uncertainty-aware
prediction model.

Compared with MC Dropout, our DKAFT models deliver more meaningful uncertainty
estimates since the inducing point technique realizes explicit modeling of the predictive
variances. As expected, the most meaningful uncertainty estimates are visible from the
models with a PPGP output layer, since the function variance is restored explicitly in the
training objective compared to those with an SVGP output layer. These observations indeed
motivated the application of our DKAFT (PPGP) model when meaningful uncertainty
estimates become a higher priority.

5.4. Calibration of the Model

Calibration of a predictive model refers to the statistical consistency between the predic-
tive distribution from the model and the observations (Gneiting et al., 2007), which is
arguably also an important aspect for healthcare applications. In GPs, the predictive vari-
ance incorporates both the modeling uncertainty (function variance) and data uncertainty
(observational noise). Even for data-points lying far from the training data, the resulting
predictive distribution tends to be well-calibrated (Rasmussen and Williams, 2005). In
this section, we demonstrate that our DKAFT models inherit this nice property from GPs.
Meanwhile, as a popular method for calibrating neural networks, MC Dropout is included in
our experiment as a baseline. We visualize the empirical CDF of the normalized residuals
with the predictive variances in Fig. 4. Besides, the CRPS score is computed to have a
quantitative comparison. The CRPS score generalizes the Mean Absolute Error (MAE) to
probabilistic predictions.

In Fig. 4, we visualize the CDF plots for both time-to-event prediction tasks. Graphically
speaking, all methods demonstrate well-calibrated behavior based on their closeness to the
best possible calibrated CDF. The ECDF of our DKAFT models is closer to the ideal CDF
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Figure 4: Empirical CDF of the normalized residual, (yi − µi)/σi, from different models
against an ”ideal CDF” from a standard normal distribution. Continuous Rank-
ing Probability Score is reported to provide a quantitative comparison. All models
show well-calibrated behavior, where our DKAFT models are better calibrated
than the baseline method, MC Dropout.

than MC Dropout. Such observation is also verified by the lower values of the respective
CRPS score. Within DKAFT models, the ones with an SVGP output layer perform slightly
better than those with PPGP and ExactGP output layers in the PFS-PRAEGNANT pre-
diction task. In contrast, the DKAFT models with a PPGP output layer outperform the
ones with an SVGP output layer in the LoS-MIMIC prediction task.

It is worth highlighting that the inference in the MC Dropout requires multiple stochastic
forward passes through the sampled network, which results in significantly slower processing
than in our DKAFT models. This would further motivate the application of the analyt-
ical solutions from the proposed DKAFT models when computational efficiency plays an
essential role in real-world applications, like in real-time response systems.

6. Conclusion and Future Works

In this work, we propose the Deep Kernel Accelerated Failure Time (DKAFT) model to
address the lack of uncertainty estimates in recurrent neural network (RNN) based solutions
for time-to-event prediction tasks. Our DKAFT model consists of an RNN encoder and a
sparse GP as the prediction model. The former serves as a trainable feature extractor to
embed the patient features into a latent space of abstract covariates. The GP-based output
layer consumes the abstract covariates of the patients, and outputs a predictive distribution
for the time-to-event prediction.

We show that the proposed model can be trained in an end-to-end fashion, like typical
neural networks, using stochastic gradient descent-based methods. In addition, a deep
metric learning-based pre-training method is proposed to further improve the performance of
the proposed model. Through experiments on two real-world datasets, the DKAFT models
show better performance in terms of the point estimates than the RNN-based models with
linear output layers. More importantly, the predictive variances from our DKAFT model
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reflect the confidence of the predictions. It produces better metrics evaluation in terms
of RMSE and MAD with monotonically higher confidence about the predictions. Such
uncertainty estimates would improve the trustworthiness of the provided model when it
interacts with the physicians. Furthermore, the predictive variance also serves to improve
the calibration of the model. Compared to MC Dropout, a popular method to augment
the uncertainty in the neural networks, our DKAFT model shows better performance and
enjoys lower computational cost, which motivates its usage in real-world applications.

As future work, we would like to further study the interpretation of the uncertainty in
the proposed model. From a machine learning’s perspective, it refers to checking whether a
test sample lies far from the manifold constituted by the training samples. From a decision
support’s perspective—since our proposed model offers predictive variances based on the
“neighboring” training samples in the feature spaces—it would offer practical help if it also
fits physicians’ understanding.

Limitations As shown in Sec. 3.2, in our DKAFT models, (right) censored observations
will contribute to the training objective through its survival function instead of the proba-
bility density function. However, due to the nature of the time-to-event prediction tasks we
focus on in this work, administrative censoring is not included in the experiments. Besides,
the evaluation of censoring cases is also beyond the scope of this manuscript. We leave
these perspectives as part of our future work.

Acknowledgement The authors acknowledge the support by the German Federal Min-
istry for Education and Research (BMBF), funding project “MLWin” (grant 01IS18050).

References

Ahmed M Alaa and Mihaela van der Schaar. Deep multi-task gaussian processes for survival
analysis with competing risks. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, pages 2326–2334, 2017.

17



Deep Kernel Accelerated Failure Time Models

Edmon Begoli, Tanmoy Bhattacharya, and Dimitri Kusnezov. The need for uncertainty
quantification in machine-assisted medical decision making. Nature Machine Intelligence,
1(1):20–23, 2019.

Alexis Bellot and Mihaela Van Der Schaar. Flexible modelling of longitudinal medical data:
A bayesian nonparametric approach. ACM Transactions on Computing for Healthcare, 1
(1):1–15, 2020.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

John Bradshaw, Alexander G de G Matthews, and Zoubin Ghahramani. Adversarial ex-
amples, uncertainty, and transfer testing robustness in gaussian process hybrid deep net-
works. arXiv preprint arXiv:1707.02476, 2017.

George H Chen. Deep kernel survival analysis and subject-specific survival time prediction
intervals. In Machine Learning for Healthcare Conference, pages 537–565. PMLR, 2020.
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Appendix A. Feature Set in MIMIC-III

To best represent the clinical status, we extracted both static and sequential information
from the MIMIC-III. The included features are the same as the Feature Set C defined in
Purushotham et al. (2018). In the chosen features, most have continuous values except for
acquired immunodeficiency syndrome, hematologic malignancy, metastatic cancer, and ad-
mission type. The missing rates of each feature can be found in Table A.26 in Purushotham
et al. (2018).

Static Information: age, acquired immunodeficiency syndrome, hematologic malig-
nancy, metastatic cancer, admission type

Sequential Information: Gastric Tube, Stool Out Stool, Urine Out Incontinent,
Ultrafiltrate, Fecal Bag, Chest Tube 1, Chest Tube 2, Jackson Pratt 1, OR EBL, Pre-
Admission, TF Residual, Albumin 5%, Fresh Frozen Plasma, Lorazepam (Ativan), Calcium
Gluconate, Midazolam (Versed), Phenylephrine, Furosemide (Lasix), Hydralazine, Nore-
pinephrine, Magnesium Sulfate, Nitroglycerin, Insulin Regular, Morphine Sulfate, Potas-
sium Chloride, Packed Red Blood Cells, Gastric Meds, D5 1/2NS, LR, Solution, Sterile
Water, Piggyback, OR Crystalloid Intake, PO Intake, GT Flush, KCL (Bolus), Magnesium
Sulfate (Bolus), Hematocrit, Platelet count, Hemoglobin, MCHC, MCH, MCV, Red blood
cells, RDW, Chloride, Anion gap, Creatinine, Glucose, Magnesium, Calcium total, Phos-
phate, INR(PT), PT, PTT, Lymphocytes, Monocytes, Neutrophils, Basophils, Eosinophils,
PH, Base excess, Calculated total CO2, PCO2, Specific gravity, Lactate, Alanine amino-
transferase (ALT), Asparate aminotransferase (AST), Alkaline phosphatase, ALBUMIN,
Aspirin, Bisacodyl, Docusate Sodium, Humulin-R Insulin, Metoprolol Tartrate, Pantopra-
zolel, Arterial Blood Pressure diastolic, Arterial Blood Pressure mean, Respiratory Rate,
Alarms On, Minute Volume Alarm-Low, Peakinsp.Pressure, PEEP set, Minute Volume,
Tidal Volume (observed), Minute Volume Alarm High, Mean Airway Pressure, Central
Venous Pressure, Respiratory Rate (Set), Pulmonary Artery Pressure mean, O2Flow, Glu-
cose fingerstick, Heart Rate Alarm Low, Pulmonary Artery Pressure systolic, Tidal Volume
(set), Pulmonary Artery Pressure diastolic, SpO2 Desat Limit, Resp Alarm High, Skin Care,
gcsverbal, gcsmotor, gcseyes, systolic blood pressure abp mean, heart rate, body temper-
ature, pao2, fiO2, urinary output sum, serum urea nitrogen level, white blood cells count
mean, serum bicarbonate level mean, sodium level mean, potassium level mean, bilirubin
level, ie ratio mean, diastolic blood pressure mean, arterial pressure mean, respiratory rate,
SpO2 peripheral, glucose, weight, height, hgb, platelet, chloride, creatinine, norepinephrine,
epinephrine, phenylephrine, vasopressin, dopamine, midazolam, fentanyl, propofol, peep,
ph.

Appendix B. ANOVA as an ablation study

We perform ANOVA to further verify the improvements reported in Tab. 1 in terms of
RMSE. In case of the progression-free survival (PFS-PRAEGNANT) prediction task (with
Fasching et al. (2015) dataset), we report a p-value of 0.064 w.r.t. the four choices of the
prediction model, and p-value of 5.9e-6 w.r.t. applying deep metric learning as pre-training
or not. In case of the length-of-stay (LoS-MIMIC) prediction task (with Johnson et al.
(2016) dataset), we report a p-value of 1.5e-6 w.r.t. the three choices of the prediction
model, and p-value of 2.0e-9 w.r.t. applying deep metric learning as pre-training or not.
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Figure 5: Grouped Box plots visualizing a comparison between different models,
RNN+AFT and ExactGP, SVGP, PPGP of our DKAFT models. A similar con-
clusion to the reported p-values from ANOVA could be drawn from these plots.

It appears that only in the case of PFS-PRAEGNANT, the choice of the prediction model
does not have a significant impact on the performance, presumably due to the relatively
small number of patient samples. In Fig. 5 we visualize the effects of these two factors as
grouped box plots.

Appendix C. Experimental Results with More Baselines and Metrics

We conducted experiments for NN-based CPH models using the PyCox package3. Both
continuous-time models (DeepSurv, CoxTime, CoxCC, and PCHazard) and discrete-time
models (LogisticHazard, PMF, DeepHit, MTLR, and BCESurv) are included, where the
latter perform much worse w.r.t. the metrics we are interested in this manuscript. Therefore,
we only report the results for continuous-time models. Besides, we include two neural
network architectures for these models, where a Multiple-Layer Perceptron (MLP) receives
aggregated features like Cox Regression and a Recurrent Neural Network (RNN) refers
to the same base network we used for our DKAFT models. In addition, we report the
concordance index (C-Index) (Harrell et al., 1982) of all methods to show their respective
discriminative performance. From Tab. 3 we can see, that these continuous-time models
only show comparable performance to our strong baseline (RNN+AFT). Meanwhile, the
RNN variants of the same model always improve the performance w.r.t. RMSE and C-Index
as they take the time-dependency of the patient information into consideration.

3https://github.com/havakv/pycox
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Abstract—Electronic Health Records often suffer from missing
data, which poses a major problem in clinical practice and
clinical studies. A novel approach for dealing with missing
data are Generative Adversarial Nets (GANs), which have been
generating huge research interest in image generation and
transformation. Recently, researchers have attempted to apply
GANs to missing data generation and imputation for EHR
data: a major challenge here is the categorical nature of the
data. State-of-the-art solutions to the GAN-based generation of
categorical data involve either reinforcement learning, or learning
a bidirectional mapping between the categorical and the a real
latent feature space, so that the GANs only need to generate
real-valued features. However, these methods are designed to
generate complete feature vectors instead of imputing only the
subsets of missing features. In this paper we propose a simple
and yet effective approach that is based on previous work
on GANs for data imputation. We first motivate our solution
by discussing the reason why adversarial training often fails
in case of categorical features. Then we derive a novel way
to re-code the categorical features to stabilize the adversarial
training. Based on experiments on two real-world EHR data with
multiple settings, we show that our imputation approach largely
improves the prediction accuracy, compared to more traditional
data imputation approaches.

Index Terms—Data Imputation, Multiple Imputation, Gener-
ative Adversarial Nets

I. INTRODUCTION

The increasing importance of data quality in healthcare:
Electronic Health Records (EHR) present a rich data source
and are, e.g., used for intra- and inter-departmental information
exchange, for documentation purposes, and, most recently, as
the basis for many analytic studies. Typically, data involving
critical clinical decision paths are of good quality, but less
critical data are often incomplete, e.g., due the huge workload
of clinical personnel; this poses a significant problem for the
secondary use of EHR data. In particular the value of a clinical
study greatly depends on data completeness and correctness.
Although the prime solution would be to enhance the EHR
quality by improving the EHR system design and the data
collection process, the missing data problem is not likely to

completely disappear. [13] provides an overview on missing
data approaches in statistics and [22] presents solutions to the
neural network setting. When using nonlinear models, data
imputation is often used [14], [23], which is also the approach
pursued in this paper. Data imputation is often based on para-
metric or nonparametric probability density estimation. In this
paper we investigate a recently developed GAN architecture.
It imputes data without calculating a probability density first,
and might become an important method of choice in the future.

Multiple instead of single imputation: More specifically,
we discuss a novel realization of the well-known multiple
imputation approach [13], [19], [21]. By embedding certain
randomness into the imputation method and performing im-
putation multiple times, one can achieve more flexibility and
reliability than with single imputation. This allows for —in
contrast to an averaged point estimate of each missing value—
estimating the statistical reliability of the imputation methods
[4]. Multiple Imputation by Chained Equations (MICE) [16]
fits one regression model for each feature that contains missing
values, conditioned on all complete features. This method can
model the dependency between features but the number of
necessary regression models increases quadratically with the
number of features. One could also simply assume a multi-
variate Gaussian distribution for the missing features and draw
multiple random samples as imputation. The covariance matrix
represents the dependency between features but the Gaussian
distribution cannot handle categorical features, which are often
present in EHR data. In this paper we investigate a novel
approach that takes into account the categorical nature of
the features while modeling inter-feature dependency in an
efficient way.

GAN as multiple imputation: In recent years, a new
class of neural networks, called Generative Adversarial Nets
(GANs), have been developed and have generated huge interest
in the research community. The original paper [8] proposes
to train a network that can learn the underlying distribution
of the data, allowing for generating unlimited amount of



data instances. When applied to images, the generated images
often appear quite real. Since their initial introduction, a large
variety of exciting improvements and modifications of the
GAN framework have been proposed to solve different and
yet related tasks, such as generating labeled data [15], image
translation [30], deriving super-resolution [11] and image
augmentation [20]. [26] proposes a new variant, the Generative
Adversarial Imputation Nets (GAINs), to perform data im-
putation and shows promising results on multiple benchmark
datasets. This method presents in fact a novel realization of
the multiple imputation concept, and it is also related to the
MICE algorithm. Instead of trying all possible orders to build
the regression chain, it exploits the expressiveness of deep
neural networks to model all features with missing values
simultaneously. However, this approach cannot immediately
be applied to EHR data, as we discuss now.

Challenge in EHR data for GAN: Most of the GAN
models have been designed for image data, where the features,
i.e., the pixel values, are real numbers. This enables error
back-propagation within the GAN framework. In EHR data,
however, a large proportion of patient features are categorical.
In order to generate categorical data, even when binary coded,
requires operations that are not differentiable, meaning that
standard adversarial training is not possible. Due to the same
reason, GANs have not seen many successful applications in
NLP data [17]. A few approaches to generate discrete data
with GANs have recently been proposed; most promising
are approaches involving reinforcement learning [27], more
specifically policy gradients [12]. Another proposed solution
is to learn a mapping function from the discrete space of words
to a latent real space as well as a reverse mapping [29]. [2]
applies this idea to handle categorical features in EHR data
and develops auto-encoders to function as the mapping. In
such cases, the GAN model only needs to generate real valued
vectors that represent the originally discrete data instances,
allowing for the gradient propagation from discriminator and
generator. In our related works section, we will review this
approach in more detail. It is to note that the mapping
functions between discrete and real spaces serve as pre- and
post-processing steps, and are crucial for the quality of the
translation between the discrete and real spaces. Such mapping
functions are often trained in an Auto-encoder fashion and
thus rely on the completeness of the input features. In a
data imputation setting, however, the input features are by
definition incomplete and the learned mappings must learn to
map incomplete data. That is to say, this proposed approach is
only applicable to generating complete feature vector instead
of subsets of features.

Our contributions: The Generative Adversarial Imputation
Nets framework [26] has been proposed to apply adversarial
training to impute missing data of real values. In this work,
we adjust this framework so that it can also perform data
imputation for categorical features. We hypothesize that the
reason that adversarial training often fails with softmax ac-
tivation in the generator is that, while the true data features
contain exclusively 0s and 1s, the softmax function can only

produce a probability value between 0 and 1. On one hand,
within a couple of epochs, the discriminator with sufficient
expressiveness can learn to discriminate the generated values
from real data exploiting this fact. On the other hand, it
typically takes more epochs of training before the generator
can produce real values close to 0 and 1. This phenomenon,
i.e., that the discriminator always makes correct decisions and
the generator always receives negative feedback from the very
beginning, results in the divergence of the adversarial training
[1]. In other words, the generator fails to learn anything useful
to improve itself.

One of our major contributions is to propose a small but very
effective modification to the data processing step. We perform
a fuzzy binary coding of categorical features, i.e., we encode
the binary values using real numbers between 0 and 1, while
retaining the category information. In this way we guarantee
that from the very beginning of the adversarial training, values
produced by the generator already resemble the real values in
their domain. To this end, the discriminator can not “cheat”
and exploit the simple fact that real data are all binary while
generated data are all real. The discriminator can only focus
on the true and informative characteristics of the real and
generated data, such as the dependency between features.
Thus, the generator can receive more useful gradient updates
from the discriminator, which improves the data generation
process.

The rest of this paper is organized as follows. In section II
we provide an overview of related works in three research
fields of GANs: generation of categorical data, application
GANs for EHR data and for data imputation. After a brief
introduction to the GAN framework in section III, we elaborate
the methods we propose in detail, including the fuzzy binary
coding and the GAN for categorical data generation in section
IV. In section V we present our experimental results on two
EHR datasets and show that imputation based on the GAN
framework with fuzzy binary coding can be quite effective in
dealing with missing categorical data in EHRs.

II. RELATED WORKS

GANs that generate categorical features: There are cur-
rently three different approaches for generating categorical
features with GANs. The first approach modifies the output
activation function in the generator so that the gradient can
flow from the discriminator to the generator while the latter
generates pseudo-discrete features. Examples are so-called
Gumbel Softmax [9], [10] or a soft argmax function [28]. The
second approach modifies the training objectives. [12], [27]
apply REINFORCE [24] algorithm for adversarial training.
The third approach, including [2], [29], learns a mapping
from the raw discrete feature space to a latent real space, as
well as the reverse mapping. These mapping functions are,
e.g., realized as an auto-encoder. With the first mapping one
transforms all training data that are originally categorical into
real representations. Then, the GANs framework only has to
operate in this real space, learning to generate real feature
vectors. As a post processing step, the generated vectors are



transformed back into the discrete space using the second
mapping function.

GANs in EHR data analysis: GANs have already found
various interesting applications in healthcare. [2] and [5] aim
at generating pseudo-synthetic EHR data for the purpose of
de-identification. The former focuses on the challenge of
generating categorical features by applying an auto-encoder
that can map between the discrete feature space and a real
latent space. It is pointed out that applying differentiable
Gumbel softmax or soft argmax functions does not completely
solve the categorical problem, because patient features could
be multinomial (i.e., multiclass) as well as multiple Bernoulli
distributed (i.e., multi-label). The latter paper develops GANs
that are based on Recurrent Neural Networks (RNN) to
generate high dimensional time series EHR data.

Missing Data Imputation using Generative Adversarial
Nets: [26] adjusted the GAN framework for the specific task
of data imputation. It can be interpreted as a special case
of conditional GAN, in the sense that both discriminator
and generator take as input a mask vector indicating the
missingness of feature values. It is shown that this novel
training framework can efficiently impute real-valued features,
especially in case where the missing rate is relatively high.
Our method is largely inspired by this work, but we focus on
the specific techniques to perform adversarial imputation of
categorical features.

III. PRELIMINARY: THE GENERATIVE ADVERSARIAL
NETS FRAMEWORK

In its simplest case, a GAN framework [8] consists of two
neural networks. The first one is often referred to as the
generator, which consumes as input some random seeds r
and generate data instances g that are supposed to resemble
real data x. The generator can be seen as a function of

g = G(r|ΘG). (1)

Each generated sample is provided to the second neural
network, the discriminator, i.e., D(g|ΘD). The discriminator
also consumes as input the real data samples as D(x|ΘD). The
training of the generator and the discriminator is adversarial,
in that, while the discriminator is trained to correctly classify
a sample to be either real or generated, the generator learns
to fool the discriminator so that it classify generated samples
to be real. More specifically, in term of the log-loss function
H(a, b) = b · log(a) + (1 − b) · log(1 − a), we can write the
discriminator loss and the generator loss as

lossD =− Ex∼PrealH(D(x|ΘD), 1)

− Er∼PseedH(D(g|ΘD), 0)

=− Ex∼Preal log(D(x|ΘD))

− Er∼Pseed log(1−D(g|ΘD))

lossG =− Er∼PseedH(D(g|ΘD), 1)

=− Er∼Pseed log(D(g|ΘD))

(2)

respectively. With sufficient training, D will not be able to
differentiate between real and generated samples by assigning

neutral values to both cases. G will learn to map random
seeds from an arbitrary distribution Pseed to the underlying
distribution of the real data Preal. Denoted as P̂real, this
estimate of the real data distribution allows for unlimited
sampling.

IV. METHOD

In this section we give a detailed introduction to our
method, which consists of two major components: the fuzzy
binary coding and a modification of the Generative Adversarial
Imputation Nets [26] for categorical feature generation.

A. Fuzzy binary coding

It is important to distinguish between multinomial and multi-
Bernoulli distributed categorical features. In the former case,
the random variable is realized by taking only one single cat-
egory, i.e., the categories are mutually exclusive. For instance,
the estrogen-receptor status of a patient could only be either
positive, negative or unknown. In machine learning, especially
if such features appear as targets, they are often referred to as
multiclass features and modelled with the softmax function.
In the multi-bernoulli case, a categorical feature can realize
more than one categories, such as the location of metastasis,
which could be multiple organs at the same time, or multiple
(serious) adverse events (AE/SAE) could be triggered by
certain treatment. For such a feature with non-mutual exclusive
categories, one often use the term multilabel. For a concise
terminology, we adopt the convention from machine learning
and refer to these two cases as multiclass and multilabel
features for the rest of the paper.

Assume that we observe p categorical features on one data
instance and the j-th feature is a multiclass one, denoted as

ξj ∈ Ωj where |Ωj | = qj (3)

As the first step, we perform regular binary coding ξj →
zj ∈ {0, 1}qj . We use the term inactive category to refer to
a category that is represented by 0; and an active category
is represented by a 1. It is easy to see that the sum of all
elements in zj is strictly 1 if ξj is of multiclass, and could be
N0 if ξj is a multilabel feature. These binary codings are also
known as one-hot and multi-hot encodings, respectively.

In the second step, we transform the binary coded variable
zj in its fuzzy representation.

a) Multiclass case: We propose a transformation denoted
as f(·) of zj as:

xj(k) = f(zj(k)) =

{
U [0, 1

qj
) ∀k : zj(k) = 0,

1−∑
k xj(k) for k : zj(k) = 1.

(4)

Please note that we use xj(k) to denote the k-th element
in the vector xj , in order to avoid double subscripts; U [a, b)
denotes a continuous uniform distribution in the interval of
[a, b). Assuming any active category to be k∗, then each of
the qj−1 inactive categories is represented by a fraction xj(k)
which is uniformly sampled from [0, 1

qj
). With this smoothing,



we can retain exactly the same information encoded in zj . It
is easy to see that,

1−
∑

∀k 6=k∗
xj(k) >

1

qj
. (5)

In other words, the left side of the inequation (5), which
represents the active category k∗, is guaranteed to be larger
than any fraction encoding an inactive category. Operations
such as max, min, argmax and argmin applied on the fuzzy
xj are always able to decode the same information in zj .

b) Multilabel case: Since the categories are no more
mutual exclusive, we can derive a fuzzy binary coding by
simply taking 0.5 instead of 1

qj
as the upper bound of uniform

sampling:

xj(k) = f(zj(k)) =

{
U [0, 0.5) for zj(k) = 0,

U [0.5, 1] for zj(k) = 1.
(6)

It is also guaranteed that the category information in zj
remains intact, since we can always recover zj applying
I(xj ≥ 0.5), where I(·) denotes the indicator function.

Transforming the binary codes into fuzzy binary codes
prevents the discriminator from exploiting the fact that the
generated values are all fractions and the real values only
contain 0’s and 1’s. This fuzzy binary coding, especially the
samplings in Eq. (4) and (6), can be performed only once
as pre-processing step, or alternatively, prior to each training
epoch. In our experiments, we implement the first variant.

In Fig. 3 we provide some empirical results based on
our experiments, demonstrating that without the fuzzy binary
coding trick, the adversarial training tends to diverge, i.e., the
discriminator keeps improving itself by exploiting the obvious
difference between the generated and real data. The generator,
therefore, receives no gradients from the discriminator for
improvement.

Applying the fuzzy encoding, the discriminator can be
forced to focus on discovering the true difference between
the real and generated data in term of their distributions and
dependencies instead of their different domains. These discov-
eries in turn shall encourage the generator to approximate the
real data distribution.

Lastly, we concatenate the feature vectors of all categorical
features as

x̄ = [x1,x2, ...,xp] = [xj ]
p
j=1 ∈ [0, 1]

∑p
j=1 qj , (7)

which form the inputs to the generative adversarial imputation
network. Note here that we do not use another subscript
denoting the data instance in x, and simply assume that they
are all i.i.d. samples.

B. Categorical Generative Adversarial Imputation Nets (Cat-
egorical GAINs)

a) Data notation: In order to represent the missingness
of data, [26] introduced a binary mask vector m indicating
which features are missing in a data instance represented by
a real vector ξ. Here m and ξ have exactly the same size

and each element m(k) is 1 if ξ(k) is not missing, and 0
otherwise.

In case of categorical features, however, we introduce two
masking mechanisms. Firstly, we use µ to denote the miss-
ingness of ξ, i.e.,

µj =

{
0 if ξj is missing,
1 otherwise

(8)

Once the features are binary and fuzzy coded, we construct
another mask vector as:

mj =

{
0 if ξj is missing,
1 otherwise

∈ [0, 1]qj , (9)

where we denote a vector of 0’s and 1’s using 0 and 1,
respectively. It can be interpreted as simply repeating µj for
qj times for the j-th feature. The rationale for these two
kinds of masking is that the discriminator’s prediction is in
fact equivalent to the missingness of the data. For real-valued
features discussed in [26], one could simply reuse the masking
vector as the target of the discriminator. But for categorical
features that are coded as binary or fuzzy binary, doing so
would imply making a prediction for each single category
instead of each feature. In the following introduction to the
generator and discriminator, we shall give a more detailed
explanation.

Analogously to the construction of x̄, we have the concate-
nation of mj’s:

m̄ = [m1,m2, ...,mp] = [mj ]
p
j=1 ∈ [0, 1]

∑p
j=1 qj (10)

b) The generator: The generator takes as input i) the
fuzzy binary coded feature vector x̄ that is expected to contain
missing values, ii) the equally sized mask vector m̄ and
iii) a random vector r̄ = [rj ]

p
j=1 functioning as seeds. The

generator produces as output a single vector denoted ḡ that is
supposed to contain imputed missing values in x̄:

ḡ = G(x̄, m̄, r̄). (11)

Specifically in our implementation, we build as generator a
neural network with 3 hidden layers:

hG1 = relu(WG
1 · [x̄+ (1− m̄) ◦ r̄, m̄] + bG1 ) (12)

hG2 = relu(WG
2 · hG1 + bG2 ) (13)

hG3 = relu(WG
3 · hG2 + bG3 ) (14)

gj = σ(WG
o (j) · hG3 + bGo (j)) ∀j ∈ [1, p] (15)

ḡ = m̄ ◦ x̄+ (1− m̄) ◦ [gj ]
p
j=1 (16)

As proposed by [26], the operation carried out in Eq. (12) first
fills the missing values in x̄ with random seeds r̄, before feed-
ing it to the neural network. The hidden layers hG1 ,h

G
2 ,h

G
3

extract hierarchically the global context information from the
input. In the last layer, we define for each categorical feature j
a specific classification model. Depending on the distribution
assumption of the feature, the activation function can be either
sigmoid or softmax, both of which are denoted using σ for
the sake of simplicity. In Eq. (16), the outputs from all p



activation functions are concatenated as [gj ]
p
j=1. And if a

specific feature is in fact not missing, the generated values are
replaced by the real values. Similar to the Multiple Imputation
by Chained Equations [21], this generator in fact attempts to
approximate the real distribution πj∗ of each missing variable
Xj∗ conditioned on all other observed features xj , i.e.,

π̂j∗ = gj∗ = P(mj∗ = 1 | {Xj = xj}∀j:µj=1) (17)

This architecture is illustrated in Fig. 1 with only two cate-
gorical features as examples.
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Fig. 1. A detailed illustration of the generator in categorical GAIN archi-
tecture. As an example, we visualize two categorical features that are binary
coded as z1 and zp. The first is labeled as observed while the second as miss-
ing in m1 and mp. Therefore, the observed binary input of z1 = [0, 1, 0] is
transformed into a fuzzy representation of x1 = [0.1, 0.8, 0.1]. And the seed
sampler fills these positions with random values in rp. On the output side, the
generated values for the first feature are replaced by the original, fuzzy codes,
since the true values are observed, i.e., g1 := x1. Only the generated values
for the other feature gp are exposed to the discriminator. The concatenation
of the overall generator output is denoted as ḡ.

c) The discriminator: Like the generator, the discrimi-
nator also consumes two input vectors. The first input is the
concatenated output of the generator ḡ. The second input is a
hint vector as proposed by [26], which can be interpreted as
a masked mask vector: For each data instance, one randomly
samples a predefined portion of features and sets the corre-
sponding entries in the mask vector m̄ to be 0.5. On the output
side of the discriminator, we have again an concatenated vector
µ̂ = [µ̂]pj=1. Each µ̂j is a point estimate of µj as defined in Eq.
(8), indicating whether the j-th feature in the input, denoted
as gj is generated or real,

µ̂j∗ = P(gj∗ is real | {gj}∀j:j 6=j∗). (18)

Generally, we can describe the discriminator as

µ̂ = D(ḡ, h̄). (19)

Specifically for our experiments, we have a neural network
with two hidden layers:

hD1 = relu(WD
1 · [ḡ, h̄] + bG1 ) (20)

hD2 = relu(WD
2 · hD1 + bD2 ) (21)

µ̂j = σ(wD
o (j)T · hG3 + bDo (j)) ∀j ∈ [1, p] (22)

In parallel to the architecture of the generator, the first two
hidden layers represent the global context information, while
the last layer contains p logistic regression models. Each of
them attempts to predict whether the j-th feature in the input
gj is generated. In the original GANs, each input vector to the
discriminator is typically either generated or real. In GAIN,
however, one input vector to the discriminator may contain
generated and real data simultaneously, and the discriminator
performs multiple predictions correspondingly.

In the original setting in [26], where the features are of
real values, the training target of the discriminator is in fact
identical with the mask vector. In case of categorical features,
however, one should not directly utilize the mask vector m̄
as training target. Because in order to mask a (fuzzy) binary
coded vector xj completely, we have to define a same sized
vector mj . Training a discriminator that attempts to recover
every element in mj is in fact a prediction for each category
instead of feature. To this end, we propose to train the
discriminator so that each µ̂j would approximate µj as in Eq.
(8) for all real data. The generator, on the other hand, should
make the discriminator assign a µ̂j that is close to 1− µj to
all generated values.

The hint mechanism is also a crucial component in training
the discriminator. Once a subset of entries in the mask vector
is set to a neutral value of 0.5, the discriminator is enforced
to predict whether the corresponding values in ḡ are real or
generated. Such prediction is supposed to rely on other entries
in ḡ that are provided to discriminator. The proportion of fea-
tures that are neutralized in the hint vector therefore controls
the amount of information from which the discriminator is
supposed to learn the decision. In order to see that one could
consider two extreme cases: With the proportion close to 1,
the discriminator would attempt to perform prediction for a
large amount of features in ḡ, based on very few features
that are denoted as either real or generated. This could be a
challenging task for the discriminator and, more importantly,
the discriminator may not learn to build the prediction based
on the dependency between features. With a proportion that is
close to 0, the hint vector becomes almost identical to the mask
vector. In the original setting in [26], where features are of real
values and the mask vector is in fact the prediction target of
the discriminator, having two almost identical vectors as input
and output of a neural network would cause the discriminator
to simply learn an identity function, not being able to tell the
difference between real and generated data. This is slightly
less of a problem in case of categorical features, because as
stated above, our mask vector as input to the discriminator
and training target are not exactly identical, although they
contain the same information on the missingness of the data.



To this end, for experiments, we include the hint mechanism
and use a relatively small proportion of 0.1. This reveals
90% of available information of the data missingness to the
discriminator, which is encouraged to build its prediction based
on the dependency among features.

The hint vector also has to be adjusted for categorical
features. Similar to the mask vectors, we define for each cat-
egorical feature j a hint vector hj that consists of exclusively
either 0 or 1, and denote the concatenation of all hint vectors
as h̄ = [hj ]

p
j=1. The proposed approach in [26] would imply

masking the missingness information for each category instead
of each feature. To this end, we propose to first sample a
subset out of the p features, and set the entire corresponding
hint vectors to be 0.5, i.e. hj = 0.5, as can be seen in the
illustration in Fig. 2
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Fig. 2. A detailed illustration of the discriminator in categorical GAIN
architecture. The input to the discriminator is the concatenated output ḡ from
the generator, as well as the hint vector h̄. The output of the discriminator
here consists of 2 scalars of µ̂1 and µ̂p. They are trained against the scalars
µ1 and µp, encoding the missingness of both features respectively.

d) Loss functions: Similar to the original GANs frame-
work as in Eq. (2), GAIN also contains two adversarial loss
functions lossD and lossG:

lossD = −Σj (µj · log(µ̂j) + (1− µj) · log(1− µ̂j)) (23)
lossG = −Σj(1− µj) · log(µ̂j) (24)

The discriminator adjusts itself to make correct classification
by minimizing the lossD in Eq. (23). This objective forces the
discriminator to produce large µ̂j if µj = 1, indicating that
xj is real. The generator learns to fool the discriminator by
minimizing lossG in Eq. (24). This loss is adversarial to the
second additive term in the discriminator loss. The generator
encourages the discriminator to assign large probability µ̂j to
features where µj = 0, implying that the generated data should
be classified as real.

As defined in Eq. (16), once a feature j is observed instead
of missing, whatever is generated by the generator gets re-
placed by the actually observed values. The weight parameters
responsible for these features will not get gradient signals for

this specific training sample. Therefore, [26] proposes a new
loss function that measures the similarity between generated
and the observed feature values. In case of real-valued features
this loss could be realized as mean-squared error. In our
case, we apply the log-loss to measure the distance between
probabilities and binary codes:

losssim = Σjm
T
j (−xj) log(gj). (25)

This loss mechanism implies that, in case a feature is
observed, the generator should learn to reproduce it based on
all other observed features; and in case a feature is missing,
the adversarial training forces the generator to produce values
that the discriminator would believe to be real.

In comparison to the original GAIN architecture in [26],
there are three adjustments that we propose for categorical
features. First, the output activation function in the generator:
in order to take into account the discrete distribution of the data
features, we apply softmax or sigmoid activation functions
instead of linear activation. Second, the target variable of the
discriminator: In case of real valued features, the discriminator
only needs to predict the mask vector m̄ which has the
same shape as the feature vector x̄. This is because each
element in the mask vector can represent the missingness of
the corresponding feature. However, in order to encode the
missingness of a feature containing multiple categories xj , it is
unnecessary for the discriminator to recover the corresponding
mask vector mj , since all values in this vector are either all
0’s or all 1’s. Instead, it is much more efficient to train the
discriminator to predict the scalar µj . Thirdly, due to the same
reason, the hint mechanism also has to be defined on the level
of feature instead of categories. In other words, for a feature
j we initialize a vector hj from mj , and set all elements to
be 0.5 if necessary.

V. EXPERIMENTS

In this section, we provide experiments conducted on two
datasets. The first dataset is publicly available and a well
known benchmark for breast cancer classification based on
categorical features. The second dataset is provided by the
PRAEGNANT study [7], a Germany-wide clinical study for
breast cancer research.

Please recall that we perform fuzzy binary coding of the
categorical features and our generator produces values that
range between 0 and 1. We recover the binary codes applying
I(xj ≥ 0.5) for multilabel and I(xj = max(xj)) for multi-
class features as a post processing step. Because, as discussed
in subsection IV-A, the encoded categorical information is
always retained after the fuzzy binary coding and can be
recovered completely.

A. Experiments on a public dataset

The breast cancer dataset is available on UCI data repository
[3]. It contains 9 multiclass features (Tab. I) observed on 286
patient cases. The prediction target is to differentiate between
201 recurrence and 85 no-recurrence cases of the cancer.



Feature #Categories
age 6
menopause 3
tumor-size 11
inv-nodes 7
node-caps 2
deg-malig 3
breast 2
breast-quad 5
irradiat 2

TABLE I
PATIENT FEATURES FROM THE UCI BREAST CANCER DATASET

We perform 5-fold cross-validation on the complete dataset,
applying logistic regressions with ridge regularization (Tab.
II) and report the prediction accuracy and AUROC scores. As
sanity check we also provide these scores produced by random
and most popular predictions, the latter of which constantly
produces the frequency of the label class in the training set.

Methods Accuracy AUROC
Random prediction 0.516 ± 0.051 0.484 ± 0.053

Most popular prediction 0.707 ± 0.051 0.500 ± 0
Prediction on complete data 0.737 ± 0.056 0.721 ± 0.051

TABLE II
SANITY CHECKS FOR THE PREDICTION TASK ON THE UCI BREAST

CANCER DATASET

For each cross-validation split, we randomly mask 10%,
20%, 30% 40% and 50% of the features. We then apply
different imputation approaches to recover the masked values.
Note that the imputation model is only trained on the training
set, and applied on both training and test sets, in order to
simulate a realistic setting. The predictive model is then trained
on imputed training set and validated on the imputed test set.

As the first baseline method we implement a low-rank
reconstruction model using SVD. Assuming Xtr and Xte as
training and test sets containing missing values, we compose
the former asXtr = UDV T , and impute the training and test
sets as X̃tr = U rDrV

T
r and X̃te = Xte(DrV

T
r )†(DrV

T
r ),

respectively. Here we denote the the low rank representation
of U ,D and V T using U r,Dr and V T

r with a specific rank
r. Please note that we do not perform any argmax to the
reconstructed values.

The same ranks also apply to the second baseline model,
which is an auto-encoder with non-linear tanh activation for
the hidden layer. We summarize all prediction performances
in term of accuracy and AUROC scores in Tab. III as average
and standard deviation of the 5 cross-validation splits. For
both baseline models we conduct experiments using 4 different
ranks, i.e., the size of the hidden layer in AE, of 4, 8, 16 and
32, and report the best results. For the categorical GAIN model
we perform 100-fold multiple imputation.

In term of accuracy, SVD reconstruction turns out to be
more effective for this dataset, achieving the best accuracy in 4
out of 5 settings of masking proportions. In term of AUROC,
categorical GAIN achieves 4 out of 5 cases. It is therefore
interesting to note that for this dataset, the SVD decomposition

Methods Accuracy AUROC

10%

No imputation 0.718 ± 0.067 0.66 ± 0.11
Avg imputation 0.744 ± 0.05 0.639 ± 0.088

SVD reconstruction 0.776 ± 0.062 0.689 ± 0.114
Auto-encoder 0.751 ± 0.047 0.652 ± 0.089

Categorical GAIN 0.739 ± 0.066 0.697 ± 0.098

20%

No imputation 0.711 ± 0.039 0.634 ± 0.07
Avg imputation 0.707 ± 0.036 0.671 ± 0.065

SVD reconstruction 0.747 ± 0.046 0.664 ± 0.082
Auto-encoder 0.729 ± 0.051 0.636 ± 0.038

Categorical GAIN 0.71 ± 0.046 0.697 ± 0.087

30%

No imputation 0.726 ± 0.031 0.644 ± 0.086
Avg imputation 0.729 ± 0.04 0.665 ± 0.071

SVD reconstruction 0.726 ± 0.053 0.689 ± 0.083
Auto-encoder 0.726 ± 0.038 0.641 ± 0.053

Categorical GAIN 0.737 ± 0.032 0.704 ± 0.042

40%

No imputation 0.678 ± 0.052 0.686 ± 0.058
Avg imputation 0.708 ± 0.027 0.54 ± 0.066

SVD reconstruction 0.751 ± 0.026 0.709 ± 0.059
Auto-encoder 0.737 ± 0.033 0.638 ± 0.054

Categorical GAIN 0.7 ± 0.017 0.686 ± 0.051

50%

No imputation 0.701 ± 0.044 0.607 ± 0.091
Avg imputation 0.704 ± 0.044 0.632 ± 0.057

SVD reconstruction 0.747 ± 0.029 0.665 ± 0.063
Auto-encoder 0.74 ± 0.034 0.635 ± 0.041

Categorical GAIN 0.713 ± 0.025 0.72 ± 0.044

TABLE III
PREDICTION PERFORMANCES ON IMPUTED UCI BREAST CANCER

DATASET USING DIFFERENT APPROACHES

does not take into account the the fact that the feature values
are in fact binary And yet the SVD reconstruction achieves
comparable performances as categorical GAIN. This relatively
simple technique, as well as many approaches that it has
inspired, are widely applied in recommender systems and
knowledge graph, where the most essential task is the com-
pletion of matrices and tensors. Therefore, it could very well
present a simple and effective solution for data imputation as
well. However, one should also note that the label distribution
in this dataset is relatively unbalanced (201:85). Consequently,
the most popular prediction as in Tab. II can already reach 70%
accuracy. And even with complete data the prediction model
cannot improve beyond 73.7%. The AUROC, in contrast,
seems to be a more informative and convincing measurement,
because the prediction on complete data achieves 72% while
the most popular prediction 50%. Therefore, for this dataset,
ROC seems to be a more reliable means to measure the
prediction quality.

B. Experiments on the PRAEGNANT dataset

1) Cohort and Features: For our experiment, we extract
EHR data on 1234 patients with metastatic breast cancer who
have met the first line of treatment from the PRAEGNANT
study network [7]. We build our predictive models based on
features that are clinically relevant, as well as those that are
based on an earlier study [25] aiming at automatically inferring
the feature relevance in EHR data. The features included are
listed in Tab. IV. We have 10 multiclass features and 9 multi-
label featues, both of which are fuzzy-binary coded. The one



numeric feature is normalized between 0 and 1. Features such
as current metastasis, metastasis estrogen receptor, metastasis
progesterone receptor, AE/SAE and ECOG life status were
originally temporal features. We aggregate and normalize these
w.r.t the time dimension as in [6]. For these patients it is
especially important for the physicians to decide, whether
they should receive antihormone therapy or chemo therapy.
The recorded clinical decision serve as ground truth, i.e. the
target of our prediction. 750 of the 1234 patients have received
antihormone, and the rest chemo therapy.

Multiclass features #Categories
Staging at breast 15
Staging at axilla 8
Ever received antihormone therapy 8
Ever received chemo therapy 8
Metastasis by diagnostics 5
Tumor estrogen receptor status 4
Tumor progesterone receptor 4
Immunohistochemistry for HER2 6
Tumor grading 5
KI67 3
Multilabel features #Categories
Staging of metastasis 10
Location of earlier metastasis 14
Current metastasis 4
Metastasis estrogen receptor 3
Metastasis progesterone receptor 3
HER2 IHC 5
Metastasis grading 4
AE/SAE 20
ECOG life status 4
Numerical features #Dimension
Age 1

TABLE IV
PATIENT FEATURES FROM THE PRAEGNANT STUDY.

Here we apply almost exactly the same experimental setting
as with the public dataset, except that, considering the feature
space of higher dimension, we train the SVD and auto-encoder
imputation models with an additional rank of 64.

Methods Accuracy AUROC
Random prediction 0.516 ± 0.029 0.526 ± 0.041

Most popular prediction 0.607 ± 0.046 0.500 ± 0
Prediction on complete data 0.710 ± 0.029 0.774 ± 0.039

TABLE V
SANITY CHECKS FOR THE PREDICTION TASK ON THE PRAEGNANT

DATASET

2) Experimental Results: In Tab. V we could see there
is a large improvement from most popular prediction to the
prediction on complete data in term of both accuracy and
AUROC.

In Tab. VI we could see that, the advantage of categor-
ical GAIN only becomes visible as the masking proportion
increases. For smaller proportion like 10% and 20%, simpler
methods such as average imputation and SVD shows superior
performances. With a proportion larger than 30%, categorical
GAIN outperforms all other methods and the improvement
grows with masking proportion. In term of AUROC, for
instance, categorical GAIN can always achieve a score above

Methods Accuracy AUROC

10%

No imputation 0.674 ± 0.017 0.718 ± 0.016
Avg imputation 0.689 ± 0.008 0.727 ± 0.024

SVD reconstruction 0.7 ± 0.015 0.645 ± 0.011
Auto-encoder 0.609 ± 0.023 0.506 ± 0.022

Categorical GAIN 0.645 ± 0.012 0.725 ± 0.024

20%

No imputation 0.669 ± 0.014 0.69 ± 0.011
Avg imputation 0.684 ± 0.015 0.707 ± 0.014

SVD reconstruction 0.663 ± 0.025 0.621 ± 0.032
Auto-encoder 0.609 ± 0.021 0.496 ± 0.03

Categorical GAIN 0.649 ± 0.016 0.716 ± 0.022

30%

No imputation 0.645 ± 0.03 0.696 ± 0.018
Avg imputation 0.658 ± 0.039 0.695 ± 0.021

SVD reconstruction 0.662 ± 0.04 0.599 ± 0.018
Auto-encoder 0.609 ± 0.043 0.528 ± 0.017

Categorical GAIN 0.665 ± 0.018 0.723 ± 0.01

40%

No imputation 0.652 ± 0.008 0.663 ± 0.009
Avg imputation 0.643 ± 0.012 0.66 ± 0.014

SVD reconstruction 0.658 ± 0.01 0.6 ± 0.017
Auto-encoder 0.608 ± 0.017 0.494 ± 0.034

Categorical GAIN 0.666 ± 0.017 0.711 ± 0.015

50%

No imputation 0.635 ± 0.027 0.646 ± 0.029
Avg imputation 0.649 ± 0.041 0.643 ± 0.038

SVD reconstruction 0.644 ± 0.015 0.566 ± 0.018
Auto-encoder 0.608 ± 0.013 0.509 ± 0.038

Categorical GAIN 0.654 ± 0.05 0.705 ± 0.029

TABLE VI
PREDICTION PERFORMANCES ON IMPUTED PRAEGNANT DATASET

USING DIFFERENT APPROACHES

70%, while the other performance of other methods drop much
faster as the proportion of missing data increases. This agrees
with findings in [26], that it is especially advantageous to apply
GAIN to impute data in case of a relatively higher missing
rate.

One might also hypothesize that the GAIN framework,
consisting of relatively complex neural networks, profit from
increasing number of training samples. For a smaller dataset
such as the public breast cancer dataset, it seems more
reasonable to first experiment with simpler methods such as
SVD reconstruction. The GAIN approach, on the other hand,
turns out to be more appropriate in case of large number of
training samples and more complex feature dependencies.

We also present in Fig. 3 the development of the losses of
discriminator (top) and generator (bottom), trained on binary
(left) and fuzzy coded (right) features. In case of plain binary
coded features, it is clear that the adversarial training fails
since the generator loss increases, while the discriminator loss
decreases constantly. This implies that the discriminator can
always tell the real data from generated ones. Consequently,
the generator cannot improve itself by learning to generate
important characteristics in the feature distribution. When we
apply the fuzzy binary coding, in contrast, the generator can
improve itself by lowering its loss, i.e., it gets harder and
harder for the discriminator to make the decision. In addition,
as expected, varying proportion of missing data (masking)
has impact on the adversarial training losses. With larger
proportion of missing data, the imputation task becomes more



challenging and both discriminator loss and generator loss
are expected to increase with larger proportion. This verifies
empirically our hypothesis, that, if one applies softmax as the
final activation in the generator to generate categorical data,
the adversarial training fails as the discriminator can learn to
exploit the huge difference in the generated and real data. This
typically results in divergence of the adversarial training. By
re-coding the binary features in a fuzzy way while retaining
the information, we enforce the real data to resemble what
softmax would produce. Thus we can make both discriminator
and generator converge in training.

Fig. 3. Losses in adversarial training on the PREAGNANT dataset. X-axis:
training epochs; Y-axis: adversarial loss. Above: Discriminator losses with
binary coding (left) and fuzzy binary coding (right). Bottom: Generator losses
with binary coding (left) and fuzzy binary coding (right).

VI. SUMMARY

In this paper, we have proposed a Categorical Generative
Adversarial Nets (Categorical GAIN) for EHR data imputa-
tion, based on a framework that is originally designed for
real values. First, we have hypothesized that applying softmax
functions as output activation in the generator directly often
results in the discriminator exploiting the obvious difference
between generated and real values. And the adversarial train-
ing typically ends up in divergence. We have proposed to
perform fuzzy coding of the binary values so that they resem-
ble generated values while retaining the encoded information.
Secondly, we have performed multiple modifications in the
architectures of both generator and discriminator, in order to
handle the fuzzy binary coded features.

We have compared our methods with a variety of benchmark
methods on two EHR datasets. We have simulated different
proportions of missing data by masking out known values
and then attempting to perform prediction tasks based on

imputed data. We could show that the more complex method
of generative adversarial nets turned out to be advantageous in
case of relatively higher missing rate and larger training data
set, while the simpler methods such as SVD reconstruction
and average imputation are more reliable to impute smaller
proportion of missing data.
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[6] Cristóbal Esteban, Danilo Schmidt, Denis Krompaß, and Volker Tresp.
Predicting sequences of clinical events by using a personalized temporal
latent embedding model. In Healthcare Informatics (ICHI), 2015
International Conference on, pages 130–139. IEEE, 2015.

[7] PA Fasching, SY Brucker, TN Fehm, F Overkamp, W Janni, M Wall-
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Chapter 6

Conclusion

In this dissertation, we have leveraged representation learning techniques to advance clin-
ical decision support from the perspective of prescriptive, diagnostic, predictive, and de-
scriptive analytics. By taking advantage of state-of-the-art neural network architectures
in deep learning, the proposed models can consume different medical data sources, such
as electronic health records (EHRs) and medical images. More specifically, we included
the sequential EHRs of patients who suffered breast cancer in the PRAEGNANT study
(Fasching et al., 2015) as well as admissions to intensive care units in the Medical Infor-
mation Mart for Intensive Care database (MIMIC-III) (Johnson et al., 2019).

In Chapter 2, we proposed a framework, estimated translated Inverse Propensity Score
(etIPS), in prescriptive analytics to provide treatment recommendations. We formulated
the learning of individualized treatment rules as a contextual bandit problem, where we
focused on the offline setting, batch learning from logged bandit feedback (BLBF). By tak-
ing advantage of state-of-the-art BLBF algorithms, we trained a potentially better policy
with data consisting of context (patient covariates), action (treatment decision), propen-
sity score, and loss (outcome information). Since propensity scores were unavailable in
observational studies, we proposed to use state-of-the-art predictive modeling algorithms
to estimate them. Experiments were conducted both in a simulation study and based on a
real-world dataset. With the simulation study, we validated the effectiveness of using the
estimated propensity score to replace the true propensity score. Based on various offline
evaluation methods on the real-world dataset, we showed that the policy derived in our
framework could demonstrate better performance compared to both the physicians and
other baselines, including a simple treatment prediction approach. For future works, it
would be thrilling to augment the proposed framework with interpretability and explain-
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ability. The new policy can be better understood and trusted by the physicians who will
interact with it.

In Chapter 3, we focused on the perspective of uncertainty-awareness in diagnostic
medical image analysis. In deep learning, most proposed regression models were found to
concentrate purely on prediction accuracy but neglect the uncertainty in their predictions.
We proposed an uncertainty-aware deep kernel learning model consisting of a Convolutional
Neural Network and a sparse Gaussian Process. Besides, we adopted various pre-training
methods from representation learning to investigate their impacts on the proposed model,
including transfer learning, convolutional autoencoder, and deep metric learning. In most
cases, our model showed better performance than common architectures. To better evalu-
ate the uncertainty-awareness of a regression model, we proposed a visualization method
called quantile-performance (QP) plot. We showed that our proposed model could express
higher confidence in more accurate predictions with the QP plot. In addition, our proposed
model computed the predictive distributions in a purely analytical fashion and was thus
computationally more efficient than sampling-based methods like Monte-Carlo Dropout.
Future works on combining deep kernel learning with state-of-the-art self-supervised learn-
ing have the potential to boost performance.

In Chapter 4, the uncertainty-aware regression models from the previous section were
further developed in the context of predictive analytics for forecasting and planning clinical
events in the future. The time-to-event prediction tasks were proposed to be solved by our
Deep Kernel Accelerated Failure Time (DKAFT) models. More concretely, we tackled two
specific challenges in this section. The first challenge lies in the sequential EHR data, which
is high dimensional due to many patient features, while the length of each sequential input
varies from patient to patient. To conquer this challenge, we applied a state-of-the-art
recurrent neural network-based model to learn a fixed-size latent representation for each
patient, which could presumably be better consumed by downstream prediction models.
The second challenge lies in time-to-event target variables being positively skewed with
possible administrative censoring. We generalized the linear class of accelerated failure
time models to nonlinear Gaussian Process-based models, which simultaneously enabled
the uncertainty-awareness of the prediction. In addition, a deep metric learning-based
pre-training method was adapted to enhance the proposed models. From the experiments
on two real-world datasets, our approach showed better point estimate performance than
various baselines, including recurrent neural network-based ones. With the QP plot dis-
cussed in the last section, the proposed model was proven to deliver better performance
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when more confident in its predictions. Future works investigating the interpretability of
the predictive uncertainty will offer more insights to assist the physicians better.

In Chapter 5, we addressed the missing data imputation problems in descriptive analyt-
ics. The imputed data could provide substantial evidence for consequent decision-making
processes, which in our case referred to the downstream machine learning models. More
specifically, we proposed Categorical Generative Adversarial Imputation Nets (Categori-
cal GAINs) for EHR data imputation with categorical patient features. The Generative
Adversarial Imputation Nets (GAINs) were initially proposed for data imputation with
continuous values, where we found the adversarial training tended to fail for discrete val-
ues like categorical features. Based on such observations, we hypothesized the failure comes
from the apparent difference between the softmax outputs (continuous) and ground-truth
values (binary), of which the discriminator could take advantage so that the generator
could only get negative feedback for updating its parameters. To tackle this problem, we
proposed performing fuzzy coding of categorical features to prevent the discriminator from
exploiting the apparent differences to stabilize the adversarial training. Together with
some other modifications on the architecture of GAINs, we have empirically shown that
the post-imputation prediction accuracy with our Categorical GAINs was higher than the
ones with more traditional methods, especially when the missing rate was relatively high.
For future works, it would be interesting to see whether we can further develop the ap-
proach to generate new patient samples with categorical features to address data privacy
problems better.

We believe the representation learning techniques will play an increasingly important
role in future healthcare analytics. The contributions in this dissertation have made several
steps ahead to more advanced clinical decision support. Physicians can presumably ben-
efit from these advanced analytical models to deliver better patient care instead of being
overwhelmed by the ever-increasing patient data.
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