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Abstract

Recurrent neural network based solutions are increasingly being used in the analysis
of longitudinal Electronic Health Record data. However, most works focus on prediction
accuracy and neglect prediction uncertainty. We propose Deep Kernel Accelerated Failure
Time models for the time-to-event prediction task, enabling uncertainty-awareness of the
prediction by a pipeline of a recurrent neural network and a sparse Gaussian Process.
Furthermore, a deep metric learning based pre-training step is adapted to enhance the
proposed model. Our model shows better point estimate performance than recurrent neural
network based baselines in experiments on two real-world datasets. More importantly, the
predictive variance from our model can be used to quantify the uncertainty estimates
of the time-to-event prediction: Our model delivers better performance when it is more
confident in its prediction. Compared to related methods, such as Monte Carlo Dropout,
our model offers better uncertainty estimates by leveraging an analytical solution and is
more computationally efficient.

1. Introduction

Since the introduction of the Electronic Health Record (EHR), an exploding amount of
healthcare-related data has been collected in clinics. The physicians often become over-
whelmed by data volume and data complexity and may turn to data-driven clinical decision
support systems (Halpern et al., 2016; Tresp et al., 2016; Xiao et al., 2018). These solutions
often provide decision support in two ways. A prescriptive system generates action rec-
ommendations, such as medications and therapy plans, while a predictive system provides
physicians with a prediction of the outcome, given a decision. Such outcome could be, for
instance, the adverse events related to a specific therapy or the progression-free-survival
time after treatment. These predictions are often based on modeling the three-way interac-
tion between the outcome, the patients’ status, and clinical decisions recorded in historical
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data. In this work, we address the prediction of treatment outcome and propose a new
class of uncertainty-aware models that can communicate uncertainty to physicians. We
argue that such uncertainty estimates add transparency and trustworthiness to the clinical
decision support systems and encourage their application on even larger scales.

Due to the high-dimensional, sparse, and sequential nature of EHR data, simpler, more
transparent white-box models often fail to capture the complex interactions between the
target variable and input features. Meanwhile, recurrent neural network (RNN)-based so-
lutions have proven capable of addressing the longitudinal aspect in EHR data (Esteban
et al., 2016; Choi et al., 2017; Yang et al., 2017b; Purushotham et al., 2018; Wu et al.,
2020). These models apply RNNs to aggregate historical observations to produce an indi-
vidual and time-dependent representation of a patient. The last layer is then a linear map
from patient representation to the target variable representing, e.g., the predicted outcome
for the patient. The advantage of an RNN is twofold. First, it can handle records that vary
in length from patient to patient, as in the analysis of texts with varying lengths (Mikolov
et al., 2012). Second, the more advanced RNN variants such as long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and gated recurrent unit (GRU) (Chung et al.,
2014) are flexible in memorizing both long-term and short-term input features. Despite the
state-of-the-art predictive performance of the neural network (NN)-based methods, these
methods fail to provide reasonable uncertainty estimates of the predictions (Nguyen et al.,
2015). It is easier to address this issue in classification tasks, as the predicted probability
can be interpreted to reflect uncertainty, which leads to various calibration approaches, like
temperature scaling (Guo et al., 2017). However, for regression tasks—like the time-to-event
prediction task in our case—one has to provide a predictive distribution to address the un-
certainty estimates, which is rarely considered in vanilla NN-based solutions. In healthcare
applications, we would argue that uncertainty-awareness of the model is as important as
point estimate performance, since the uncertainty estimates would assist the physicians in
better interpreting the results from a black-box model (Begoli et al., 2019). If the model
provides a high uncertainty estimate for its prediction, the physicians would be more careful
about it and take a closer look at that case.

It is, however, not a trivial task to augment NNs with reliable uncertainty estimates.
Currently, popular choices to do so include MC Dropout methods (Gal and Ghahramani,
2016), Bayesian neural networks (Bishop, 2006) and deep ensembles (Lakshminarayanan
et al., 2017). Many variants of them involve repeated sampling procedures either during
training or during inference, which could become computationally expensive for large NNs.
In this work, we investigate the possibility of quantifying the predictive uncertainty by
applying Gaussian Processes (GPs). As a popular class of machine learning methods, GP
produces a predictive distribution instead of a single point estimate for each test sample. For
small datasets, GPs have proven to be flexible and data-efficient. However, GPs’ inclusion
of a large training dataset inevitably introduces large storage and computational complexity
(Rasmussen and Williams, 2005). With the recent advance of sparse GP techniques, the
computational complexity has been largely reduced (Liu et al., 2020). Motivated by the
desirable predictive distribution of GPs and the progress of sparse GPs, we propose in this
work a novel approach by integrating RNNs as feature extractors into GP-based predictive
models. Furthermore, we propose a deep metric learning (DML)-based pre-training method
to further improve the performance of the model.
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In the context of time-to-event prediction, our proposed model is closely related to the
Accelerated Failure Time (AFT) models (Prentice, 1978; Kalbfleisch and Prentice, 2002).
As one of the well-known models in survival analysis, the AFT models have shown promising
results, especially when, in an application, the direct prediction of survival time is more
important than hazard estimation. With our proposed method, we have augmented the
uncertainty estimates in the AFT models.

Generalizable Insights about Machine Learning in the Context of Healthcare

Neural networks offer powerful modeling ability to learn from EHR data, but often neglect
the uncertainty estimates in the predictions. Leveraging state-of-the-art sparse GPs, we
propose a method to integrate the uncertainty into the NN-based solutions for time-to-
event prediction tasks. Experiments on two real-world datasets show that the resulting
model can 1) scale very well to large datasets; 2) deliver improved performance regarding
point estimates; 3) offer reasonable predictive variances, which reflect the confidence of
the predictions and enhance the calibration of the model. The uncertainty estimates in our
model can help establish a trustworthy relationship with physicians since it expresses higher
confidence in more accurate predictions and vice versa.

2. Related Work

Predictive Modeling with EHRs To better capture the time-dependent information
of patients, many works have been proposed to model longitudinal EHR data, ranging
from earlier statistical methods like landmarking (Van Houwelingen, 2007), Joint Models
(Rizopoulos, 2011; Hickey et al., 2016), to more recent methods like Bayesian Nonparametric
Dynamic Survival (Bellot and Schaar, 2020). Meanwhile, RNN-based approaches have
proved to be very successful both for discrete medical events and continuous time-series
data. Esteban et al. (2016) applied sequence-to-sequence RNN models to predict discrete
medical events of patients suffering from kidney failure. Yang et al. (2017b) proposed many-
to-one RNN models to deal with discrete medical events and predict the therapy decision
for breast cancer. At the same time, Choi et al. (2017) applied models of similar structure
for the early detection of heart failure onset. For continuous time-series data, multiple
readings of individual signals are usually aggregated to reduce the high-resolution patient
data so that they can be better consumed by the neural networks, e.g., heart rate and blood
pressure in ICU time-series data (Johnson et al., 2016). With the aggregation method on the
ICU time series data, Purushotham et al. (2018) provided RNN-based benchmarks for the
mortality prediction, length-of-stay prediction, and ICD-9 code group prediction. Following
similar data pre-processing steps, Wu et al. (2020) presented RNN-based models to learn
the optimal treatment strategies for administering intravenous fluids and vasopressors. In
this work, we include EHR data with discrete medical events as well as the dataset with
continuous time-series measurements for the time-to-event prediction tasks to validate our
proposed model.

Survival Analysis with Neural Networks and Gaussian Processes As most pop-
ular approaches in survival analysis are based on generalized linear models, they have been
extended to nonlinear models, including NNs and GPs. Saul (2016) proposed chained GPs
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to model multiple parameters of the log-logistic likelihood in AFT models through the
latent functions of GPs. In addition, many GP-based methods are proposed to enhance
the Cox proportional hazards (CPH) model, including the Bayesian semi-parametric model
(Fernández et al., 2016) and deep multi-task Gaussian process DMGP (Alaa and van der
Schaar, 2017). For NN-based approaches, Yang et al. (2017a) combines tensorized RNN
model with the AFT model to predict progression-free survival (PFS) time. Kvamme et al.
(2019) proposes an extension of CPH models, CoxTime, by parametrizing the relative risk
function with NNs as well as modeling interactions between covariates and time. However,
most of these works focus on capturing the non-linearity between covariates to improve the
performance of point estimates. The uncertainty perspective of the prediction is rarely ad-
dressed. More recently, Chen (2020) proposed Deep Kernel Survival Analysis to learn kernel
functions for the conditional Kaplan-Meier estimator and enables subject-specific survival
time prediction intervals. The uncertainty is quantified by the prediction intervals. With
an emphasis on uncertainty-awareness, we explore in this work the time-to-event prediction
tasks with the AFT models using a combination of RNNs and GPs.

Exact Gaussian Process and Scalable Variational Gaussian Process with Neural
Networks Since the capacity of GPs grows with available training data, many works have
proposed possible solutions for both exact GP and sparse GP. Based on the efficient GP in-
ference using Blackbox Matrix-Matrix multiplication from Gardner et al. (2018), Wang et al.
(2019) realized exact GP training on over a million training samples by taking advantage
of multi-GPU parallelization. Meanwhile, various works have been proposed to approxi-
mate the original GPs to save computational cost, including some early efforts, such as the
Bayesian committee machine (BCM) (Tresp, 2000), the Nyström methods (Williams and
Seeger, 2001), the Fully Independent Training Conditional (FITC) Approximation (Snelson
and Ghahramani, 2006), Variational Free Energy (VFE) (Titsias, 2009), the more recent
Scalable Variational Gaussian Process (SVGP) (Hensman et al., 2013) and Parametric Pre-
dictive Gaussian Process (PPGP) Regressor (Jankowiak et al., 2020) (more details see Sec.
3.2). In addition, the idea of combining sparse GPs with neural networks also received much
attention, where the Deep Kernel Learning (DKL) (Wilson et al., 2016) and GP hybrid deep
networks (GPDNN) (Bradshaw et al., 2017) are the ones most related to our work.

3. Methods

This section first discusses the RNN-based feature extractors to learn representations from
the patients’ static and sequential information. The resulting latent representations are
used as inputs for the time-to-event prediction task. We will elaborate on our proposed
model, which combines the GP-based models with AFT models. Afterward, a DML-based
supervised pre-training method is presented to enhance the performance of the proposed
model.

3.1. Recurrent Neural Networks as Feature Extractors

EHR data typically consist of static features and sequential features, both of which are
important for the time-to-event prediction tasks. We regard the background information
of each patient as static features xsta

i ∈ Rnsta . We use i,nsta to denote the patient sample
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index and the number of static features, respectively. In addition, features observed at
all time-steps constitute the sequential feature matrix Xseq

i = [x0
i ,x

1
i , . . . ,x

ti
i ]> ∈ Rti×nseq ,

where ti is the number of observed time-steps for the i-th patient sample and nseq denotes
the number of sequential features. Due to the high sparsity or redundancy in raw features
spaces, it has been shown to be beneficial to first apply a (non-linear) embedding layer
on the raw features to learn the static hidden representation hsta

i and sequential feature
embeddings Xseq emb

i (Esteban et al., 2016). Formally, we have

hsta
i = g1(Ax

sta
i ) ∈ Rnsta repr

Xseq emb
i = g2(X

seq
i B) ∈ Rti×nseq emb

where A ∈ Rnsta repr×nsta ,B ∈ Rnseq×nseq emb are embedding matrices, g1(·), g2(·) are activa-
tion functions like tanh(·), nsta repr, nseq emb denote the dimension of the static hidden repre-
sentations and the sequential feature embeddings, respectively. Afterward, more advanced
variants of RNNs, LSTM or GRU, are used to encode the sequential feature embeddings
Xseq emb

i into sequential latent representations hseq
i . Since we are mainly interested in mod-

eling the time-to-event, only the last hidden states from LSTM/GRU are involved as inputs
in the down-streaming tasks. Formally, we have

hseq
i = RNN(Xseq emb

i ) ∈ Rnseq repr ,

where nseq repr is the dimension of sequential hidden representations and RNN(·) could be
an LSTM or GRU.

LSTM/GRU

LSTM/GRU

Figure 1: Illustration of the RNN-based feature extractor: An (non-linear) embedding layer
is first involved in learning the sequential feature embeddings, which are then fed
into RNN-based models to encode the sequential hidden representations. These
are then concatenated with the static hidden representations. The complete hid-
den representation is expected to encode all relevant patient information and
serves as abstract covariates for the down-streaming time-to-event prediction task.
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The complete structure of the feature extractor is shown in Fig. 1. Similar to the encoder
part in Cho et al. (2014), this procedure is especially appealing for the patients with different
observed time-steps, as it is theoretically capable of storing all relevant information in the
medical events with variable lengths but remains a consistent form of representations.

3.2. Scalable Variational Gaussian Processes for Time-to-Event Prediction

From the last section, we have learned the static hidden representation hsta
i and the sequen-

tial hidden representation hseq
i through RNN-based feature extractors. By concatenating

them, we get the complete hidden representation as

hi = [hsta
i ;hseq

i ] ∈ Rnsta repr+nseq repr ,

which can be viewed as abstract covariates of patients in a latent feature space.
The class of Accelerated Failure Time (AFT) models is a general class of models, where

the covariates of the patients are assumed to act multiplicatively on the time-scale (Collett,
2015). Compared to the semi-parametric Cox proportional hazards (CPH) models, the AFT
models take advantage of their parametric nature and include a wider range of survival time
distributions. Formally, with the time-to-event target variable zi, the AFT models predict
its logarithm as log zi := yi = β>hi + εi, where β>hi is the linear predictor with the

(trainable) parameter vector β, εi
i.i.d.∼ Dε denotes the error term which is specified by a

particular probability distribution Dε. Common choices for Dε include Normal, Weibull
and Logistic distributions, which correspondingly specifies the target variable zi to be log-
normal, log-weibull and log-logistic distributed, respectively. In this work, we assume our
target variable of interest to follow a log-normal distribution. In other words, we have

correspondingly εi
i.i.d.∼ N (0, σ2obs). Furthermore, we propose to replace the linear predictor

β>hi with Gaussian Process posterior prediction to enable uncertainty-aware predictions.
In the following, we shall introduce this approach in detail.

As shown in Fig. 2, after we obtain the hidden representations hi from the feature
extractor fΦ(·) (details see Sec. 3.1), these are used as abstract patient covariates for the

Figure 2: Graphical model of Deep Kernel Accelerated Failure Time models in plate nota-
tion. Nodes represent variables, where shaded ones are observable and non-shaded
ones are latent. Plates indicate the repetition of the subgraph.
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subsequent GP-based models gΘ(·) to generate predictive distribution yi ∼ N (µi, σ
2
i ), the

logarithm of the target variable. We denote Φ and Θ as the trainable parameters in
the RNN-based feature extractor and the GP-based predictive model, respectively. Since
we take advantage of neural networks with GP-based models as an advanced version of
AFT models, we name it Deep Kernel Accelerated Failure Time (DKAFT) models. In the
following, we will discuss different GP-based models in our proposed method.

In regression, yi is a noisy observation of the GP function value fi = f(hi), which is
assumed to behave a priori according to

p(f |h1, . . . ,hn) = N (0,K),

where f = [f1, . . . , fn]> ∈ Rn is a vector of GP function values andK ∈ Rn×n is a covariance
matrix, whose entries are given by the covariance function kij = k(hi,hj). The choice of
the covariance function reflects the prior knowledge of the generative process of the model,
where a Radial Basis Function (RBF) kernel is commonly used. There are some important
hyper-parameters in the covariance function, e.g., the length-scale and signal variance in the
RBF kernel, which can be learned through maximizing the log marginal likelihood defined
as

LExactGP = −1

2
y>
(
K + σ2obsI

)−1
y − 1

2
log
∣∣K + σ2obsI

∣∣− n

2
log 2π. (1)

With the optimized parameters, the prediction of a test sample f∗ can be understood as
computing the conditional probability of the test location given all values in the training
dataset. Formally, the GP model outputs a predictive distribution as

f∗ ∼ N (k>∗
(
K + σ2obsI

)−1
y, k∗∗ − k>∗

(
K + σ2obsI

)−1
k∗), (2)

where k∗ = [k(h1,h∗), . . . , k(hn,h∗)]
> ∈ Rn denotes the covariance function values between

the training inputs and the test input h∗. Please note that, in contrast to the original AFT
formulation, the covariates hi do not influence the logarithm of the target variable directly
in GP. Instead, the accelerating effect is realized via the covariance function.

Equation 1 and Equation 2 reveal the training and inference step for our proposed
DKAFT model with an Exact GP output layer. However, the Exact GP cannot scale
well to a large-scale dataset due to the O(n3) computational complexity from the inverse
operations of the large covariance matrix K.

A tremendous amount of work has been proposed to address the scalability issue in the
Exact GP, where the techniques of inducing points with variational inference have found
most interest (Quinonero-Candela and Rasmussen, 2005). In short, the inducing points
constitute a “summary” dataset, which is learned to generalize the original dataset to
reduce the O(n3) computational complexity. They consist of inducing inputs {ui}mi=1 =: U
(corresponding to {hi}ni=1) and inducing variables {vi}mi=1 =: v (corresponding to {fi}ni=1),
where m� n. In the context of our DKAFT model, the inducing inputs refer to a summary
of the abstract patient covariates in the latent space. The learning of the inducing points
is facilitated by variational methods under different approximation assumptions, e.g., the
prior approximation and posterior approximation (Liu et al., 2020).

Among various GP approximations, the Scalable Variational Gaussian Process (SVGP)
proposed by Hensman et al. (2013) reduces the computational complexity to O(m3) and
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makes the training amenable to stochastic gradient descent (SGD)-based methods. More
concretely, the variational distribution q(v) of the inducing variables is assumed to follow a
multivariate Normal distribution N (m,S) in SVGP. Following the notation in Jankowiak
et al. (2020), instead of the log marginal likelihood objective in an Exact GP, we optimize
the parameters by maximizing the Evidence Lower BOund (ELBO)

LSVGP =

n∑
i=1

{
logN

(
yi | µf (hi) , σ

2
obs

)
−
σ2f (hi)

2σ2obs

}
−KL(q(v)‖p(v)) (3)

and the predictive distribution for each sample is

fi ∼ N (µf (hi), σ
2
f (hi)) = N (k>i K

−1
vvm, kii − k>i K−1vvki + k>i K

−1
vvSK

−1
vvki). (4)

Kvv ∈ Rm×m is the covariance matrix of the inducing variables, whose entries are computed
based on inducing inputs as kvvij = k(ui,uj), ki = [k(u1,hi), . . . , k(um,hi)]

> ∈ Rm is the
covariance function values between all inducing inputs with the sample input hi, and KL(·‖·)
denotes the Kullback–Leibler divergence between two distributions.

Both training and inference of SVGP in Equation 3 and Equation 4 are more computa-
tionally tractable, since they only involve the inducing points instead of the whole dataset
as in Exact GP. We can therefore take advantage of this formulation for large-scale datasets.
With LSVGP as an objective, we have our DKAFT model with an SVGP output layer.

More recently, Jankowiak et al. (2020) found that the predictive uncertainty from SVGP
is dominated by the input-independent observational noise σ2obs, whereas it is indeed the
input-dependent function variance σ2f (hi) that makes the GP posteriors attractive. Differ-
ent from the SVGP objective in Equation 3, the Parametric Predictive Gaussian Process
(PPGP) Regressor takes advantage of the predictive distribution in Equation 4 and em-
beds it directly in the objective using Maximum Likelihood Estimation (MLE) methods.
Formally, the objective in PPGP is defined as

LPPGP =

n∑
i=1

logN
(
yi | µf (hi) , σ

2
obs + σ2f (hi)

)
−KL(q(v)‖p(v)). (5)

With LPPGP as a training objective, we have our DKAFT model with an PPGP output
layer.

The objectives introduced above are defined for samples with observed time-to-event.
For right-censored cases, we can take advantage of the parametric predictive distribution
in Equation 4 to compute the survival function, whose logarithm contributes to the final
objective together with the ELBO objective. Such an optimization objective is also used
in AFT models, where the non-censored cases contribute to the objective through their
respective probability distribution function and the censored ones through the survival
function (see Collett, 2015, Equation 5.9). Formally, the survival function of the log-normal
distribution in our DKAFT model is

S(z|hi) = 1− Φ

(
log z − µf (hi)

σf (hi) + σobs

)
,

where Φ(·) is the cumulative distribution function of a standard normal distribution.
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3.3. Deep Metric Learning as Supervised Pre-training

The proposed architecture with RNNs as feature encoders and sparse GPs as predictive
models is trainable in an end-to-end fashion with gradient descent. The free parameters
include parameters in RNNs, the inducing points, and hyper-parameters in the covariance
function. In our experiment, we realize that training such architecture from scratch could
be challenging. Given an RNN and inducing points that are both randomly initialized,
the covariance matrix in GP is also random. This often causes the length scale parameter
in the RBF kernel to shrink to extremely small values, and the GP would then degrade
to its prior, correspondingly. To alleviate such problems, we find the initialization of the
inducing points to be an important step for obtaining good models. More specifically, we
find that the training always fails if we initialize the inducing inputs with random vectors.
On the other hand, initializing the inducing points with latent representations from the
RNN-based feature extractor always shows good performance, even though the parameters
in the feature extractor are initialized randomly. Formally, we get the initial inducing inputs
as

uinit
i = hinit

i = fΦinit
(xsta

i ,Xseq
i ),

where a random subset of the training inputs {xsta
i ,Xseq

i }mi=1 is involved. To this end, we
conjecture that a pre-training step on the feature extractor would boost the performance of
our DKAFT model. Since many covariance functions, e.g., RBF kernels, take the distance
between samples as input, it would be beneficial if the feature extractor generates abstract
covariates in well-clustered latent spaces, where the samples with similar target variables
are closer to each other. We propose that one could achieve such a beneficial configuration
via Deep Metric Learning (DML), which is initially proposed for vision-related tasks like
face verification (Schroff et al., 2015) and person re-identification (Hermans et al., 2017).
What DML learns is to represent samples in a latent space that retains the similarity in
the target variables.

In DML, pair loss or triplet loss provides the foundation for embedding samples us-
ing twin networks, which refers to the replications of the same feature extractor network.
Various losses have been proposed to improve the embedding from different perspectives, in-
cluding contrastive loss (Hadsell et al., 2006), triplet margin loss (Weinberger et al., 2006) or
the more recent Signal-To-Noise Ratio loss (Yuan et al., 2019). More specifically, a triplet
is defined with the class information to consist of an anchor, a positive, and a negative
sample, {xsta

i ,Xseq
i }A/P/N, where the anchor is of the same class as the positive and the

negative is not. As there are no class labels in time-to-event prediction, we propose to
categorize the target variables according to their binnings in the histogram to facilitate the
triplet generation. In the context of our DKAFT model, we train the RNN-based feature
extractor using, e.g., triplet margin loss (Schroff et al. (2015))

Jtriplet =

n∑
i=1

[
d(hA

i ,h
P
i )− d(hA

i ,h
N
i ) + α]+,

where d(·, ·) is a distance metric, like Euclidean distance, hA
i ,h

P
i ,h

N
i are the abstract covari-

ates of anchor, positive, and negative samples, α is a predefined margin value, and [·]+ takes
the positive part of the variable. From the GP perspective, it is the covariance function
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that defines the “similarity” between samples, the choice of a specific loss in DML should
therefore take it into consideration.

To find a suitable training epoch for the pre-training, we use an early stopping technique,
which terminates the training automatically if the monitored metric does not improve over
a given number of epochs. Mean Average Precision at R (MAP@R) proposed in Musgrave
et al. (2020) is used as the monitored metric on the validation set, which combines the
metrics of Mean Average Precision and R-precision.

To conclude, we propose to apply an RNN-based feature extractor to learn fix-sized
latent representations from patient trajectories of variable lengths. The feature extrac-
tor can be randomly initialized or pre-trained with our proposed DML-based approach.
The DKAFT model is trained end-to-end against (sparse) GP objectives using SGD-based
methods and produces predictive distributions.

4. Cohort

4.1. Data Extraction

We have included two datasets to validate the effectiveness of our proposed method. In
both datasets, we treat observed time-to-event as our target variables.

The first dataset is provided by the PRAEGNANT study network (Fasching et al.,
2015), which focuses on patients suffering from metastatic and incurable breast cancer.
Based on a patient’s background information and medical history, we attempt to predict the
Progression-Free Survival time (PFS-PRAEGNANT), i.e., the number of days till the next
recorded progression. The raw data are hosted in a relational database system, secuTrial®,
and can be accessed under restrictions. After querying and preprocessing, we retrieved a
dataset of 1336 patient cases.

The second dataset comes from the Medical Information Mart for Intensive Care database
(MIMIC-III), a freely accessible database, which contains data including 53, 423 distinct In-
tensive Care Unit (ICU) admissions of adult patients between 2001 and 2012 (Johnson et al.,
2016). In this work, we consider a cohort of patients from MIMIC-III v1.4, who are older
than 15 years at the time of ICU admission. Besides, only the first admission of these pa-
tients is included to prevent potential information leakage in the analysis. Based on the data
collected during the first 48 hours, we attempt to predict the length-of-stay (LoS-MIMIC)
for each admission, i.e., the number of days between hospital admission and discharge from
the hospital. More specifically, we followed the scripts1 provided by Purushotham et al.
(2018) and extracted a dataset with 31, 986 patient admissions.

In both extracted datasets, all cases are with observed time-to-event. In case of the
MIMIC dataset, the patients were always supposed to leave the ICU and the PRAEGNANT
patients all have metastasis and were expecting multiple progressions.

4.2. Feature Processing

In the PRAEGNANT dataset, the static information includes 1) basic patient information,
e.g., age and height 2) information on the primary tumor, and 3) history of metastasis
before entering the study. In total, there are 26 features of binary, categorical, or numerical

1https://github.com/USC-Melady/Benchmarking_DL_MIMICIII
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type. After performing one-hot encoding on the binary and categorical features, we obtain
a feature vector xsta

i ∈ R114 for the static information with an average sparsity of 0.871.
The sequential information includes 4) local recurrence 5) metastasis 6) clinical visits 7)
radio-therapies 8) systemic therapies, and 9) surgeries. These events are observed with a
timestamp, and multiple events could happen at the same timestamp. After performing
binary-encoding on 26 sequential features, we extract a feature matrix Xseq

i ∈ Rti×188 for
the sequential information of each patient case, where ti denotes the length of the sequence
before the progression. The length of the sequences ti varies from 1 to 22 and is on average
6.42. The average sparsity of the sequential feature matrix is 0.973.

In the MIMIC-III dataset, the static information refers to the basic information during
the admission, e.g., age and admission type. After performing binary encoding on five static
features, we obtain a feature vector for each admission xsta

i ∈ R10. Moreover, the sequential
information refers to the continuously monitored measurements or prescriptions in the ICU
environment. They are sampled or aggregated every one hour to represent the patient
status at different time steps. 136 sequential features have been selected. Those features
are available for most patients. As a result, we extract a feature matrix Xseq

i ∈ Rti×136 for
the sequential information, where ti is 48 for all patient admissions. A complete list of the
chosen features can be found in Appendix A.

5. Experiments

5.1. Experimental Details and Evaluation Approaches

We conducted cross-validations (CV) for the PFS-PRAEGNANT and LoS-MIMIC predic-
tion tasks with 90% samples in the dataset. The validation set is used for tuning hyper-
parameters like, e.g., the dimension of the latent representations, weight decay, and training
epochs. As a result, we have 4, 32, 128 and 4, 64, 64 for the size of the static latent repre-
sentations nsta repr, sequential feature embeddings nseq emb, and sequential latent represen-
tations nseq repr in the PFS-PRAEGNANT and LoS-MIMIC prediction tasks, respectively.
The evaluation metrics reported in the following are all computed based on the remaining
unseen 10% samples of the dataset.

All our NN-based models are built with the PyTorch package (Paszke et al., 2019). The
GP-related methods are implemented with the help of the GPyTorch package (Gardner
et al., 2018). Related scripts2 are published to ensure the reproducibility of the work.

Since the target variable zi is assumed to follow a log-normal distribution, it is not
appropriate to measure the results using Root Mean Square Error (RMSE) in its original
scale. Therefore, we report the more robust metric of Median Absolute Deviation (MAD)
defined as MAD = mediani(|zi − ẑi|). In addition, we report the RMSE in the logarithmic

scale of the target variable, which is defined as RMSE =
√

1
n

∑n
i (yi − ŷi)2.

In addition to the point estimate performance, we also evaluate the meaningfulness
of the predictive variance σi of our proposed model as well as other uncertainty-aware
baselines using a Quantile Performance (QP) plot (Wu et al., 2021; Yang and Buettner,
2021). Intuitively, the predictive confidence generated by a model is only systematically
meaningful if the model assigns higher confidence to the more accurate predictions and lower

2https://github.com/ZhiliangWu/DKAFT
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confidence to the less confident ones. In the scope of our work, we interpret the predictive
variance as a form of confidence estimation, where smaller values correspond to higher
confidence. Therefore, the predictive variance from our model enables a formal evaluation
of such expected behavior. Concretely speaking, we extract the evaluation pairs {yi, ŷi}ni=1

(or {zi, ẑi}ni=1) for each quantile of the predictive variance of the model q ∈ { 1
Q ,

2
Q , . . . , 1},

where the corresponding predictive variance σ2i is smaller than or equal to the q-th quantile.
Formally, we have the performance in each quantile as

Performanceq := Metric({(yi, ŷi) or (zi, ẑi) | ∀σ2i ≤ q-th quantile}),

where Metric(·) could be MAD for zi or RMSE for yi. We plot the performance of each
quantile on the y-axis against the corresponding q values on the x-axis. For a model with
meaningful uncertain-awareness, a monotonically increasing line is expected in the QP plot.
Furthermore, a stronger correlation between the metric and confidence across the quantiles
suggest a better quantification of the predictive uncertainty.

Finally, we plot the (empirical) Cumulative Distribution Function (CDF) of the nor-
malized residuals to show how well our model is calibrated as a further evaluation metrics.
According to our normal distribution assumption on the logarithmic scale of the target
variable, it is expected to be close to the CDF of a standard normal distribution N (0, 1). In
addition, the Continuous Ranking Probability Score (CRPS), a popular calibration metric
for regression (Gneiting and Raftery, 2007; Jankowiak et al., 2020), is reported to have a
quantitative comparison.

5.2. Evaluation of the PFS-PRAEGNANT and LoS-MIMIC prediction

As weak baselines, we report the performance of standard Cox and AFT regression using
the R package survival (Terry M. Therneau and Patricia M. Grambsch, 2000; Therneau,
2020) with raw features aggregated w.r.t. the time axis. Such aggregation has been used in
Esteban et al. (2015) and Yang et al. (2017a), which turns out to be a reasonable solution
to deal with features with time-stamps by ignoring the order of the events.

To investigate the performance of different output layers as we discussed in Sec. 3, we
train all models with the same RNN-based feature extractor. Using a linear output layer
as our strong baseline (RNN+AFT ) (Yang et al., 2017a), we include the SVGP and PPGP
output layers for both prediction tasks, which are denoted as DKAFT (SVGP) and DKAFT
(PPGP), respectively. Thanks to the moderate size of the PRAEGNANT dataset, we also
have an ExactGP output layer for the PFS-PRAEGNANT prediction task, which we denote
as DKAFT (ExactGP). To validate our proposed initialization method, we pre-trained the
feature extractor using DML and then fine-tune the proposed model. In such a case, the
performance of models without pre-training naturally serves as the baselines. Note that,
for our DKAFT models, only the mean predictions are involved in the evaluation of point
estimates. Results are summarized in Tab. 1. For NN-based CPH baselines (Kvamme et al.,
2019), we report the results in Tab. 3 in Appendix C.

From Tab. 1 we can see that our DKAFT models demonstrate much stronger perfor-
mance compared to the Cox Regression and AFT Regression with aggregated features. For
the evaluation w.r.t. RMSE, our DKAFT models all outperform the corresponding strong
baselines, the RNN+AFT models. Tab. 2 shows the p-values of paired t-tests quantifying
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Table 1: Experimental results: MAD in the original scale (days) and RMSE in the logarithmic scale
for PFS-PRAEGNANT and LoS-MIMIC prediction tasks. Our DKAFT models outperform
the baselines, including Cox Regression, AFT regression, and RNN+AFT models. More
baselines in Appendix. C.

Progression-Free Survival Length-of-Stay
Method Pre-training MAD RMSE MAD RMSE

Cox Regression −∗ 200.800± 16.984 1.609± 0.054 2.727± 0.007 0.638± 0.0002
AFT Regression −∗ 206.065± 8.988 1.685± 0.080 2.742± 0.014 0.630± 0.0001

RNN+AFT None 150.918± 3.009 1.273± 0.019 2.476± 0.040 0.575± 0.003
DKAFT (ExactGP) None 144.622± 8.689 1.225± 0.022 −† −†

DKAFT (SVGP) None 154.237± 13.490 1.211± 0.020 2.428± 0.056 0.572± 0.003
DKAFT (PPGP) None 147.108± 6.284 1.220± 0.019 2.351± 0.021 0.563± 0.001

RNN+AFT DML 138.155± 7.496 1.267± 0.007 2.452± 0.057 0.568± 0.001
DKAFT (ExactGP) DML 134.422± 7.255 1.202± 0.012 −† −†

DKAFT (SVGP) DML 151.852± 11.305 1.221± 0.007 2.438± 0.079 0.567± 0.005
DKAFT (PPGP) DML 146.616± 17.109 1.195± 0.008 2.346± 0.042 0.557± 0.002

∗Not applicable to the method.
†Not possible due to the O(n3) computational complexity.

the performance improvement of our DKAFT models. In the task of PFS-PRAEGNANT
prediction, we can see our DKAFT models outperform RNN+AFT models significantly
(with a significant level α = 0.05). In contrast, only DKAFT (PPGP) models show signif-
icantly better RMSE performance in the LoS-MIMIC prediction task. For the evaluation
regarding MAD, our DKAFT (ExactGP) model performs best in the PFS-PRAEGNANT
prediction task, while it is DKAFT (PPGP) for the LoS-MIMIC prediction task. Mean-
while, we can observe a moderate improvement for most models pre-trained with DML
compared to those trained from scratch.

Table 2: p-values from paired t-tests to assess the significance of improvement achieved by
our DKAFT models, based on the RMSEs collected from multiple cross validations.
A two factor ANOVA on the effect of different model setups can be found in the
Appendix.B

No pre-training DML
Comparison candidates PFS LoS PFS LoS

DKAFT (ExactGP) vs. RNN+AFT 0.021 −∗ 2e-4 −∗
DKAFT (SVGP) vs. RNN+AFT 0.010 0.282 0.001 0.682
DKAFT (PPGP) vs. RNN+AFT 0.002 0.001 3e-4 3e-4

∗Not possible due to the O(n3) computational complexity.
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As discussed in Sec. 3, DKAFT models are trained by either optimizing the log marginal
likelihood objective or the variational approximation of it, which is essentially a generaliza-
tion to mean square error in linear regression. Therefore, improved performance is expected
as the GP-based output layers include inducing points during the training and inference
time, which implicitly facilitates integrating all possible linear models. Meanwhile, since
MAD is a more robust metric than RMSE regarding outliers, there are some performance
differences of the same model between these two metrics.

The superior performance of the DKAFT (SVGP) and DKAFT (PPGP) compared to
DKAFT (ExactGP) w.r.t. RMSE is a bit surprising since these models are essentially
approximations of the latter. We speculate that such phenomenon comes from the sparse
and high-dimensional features in the PRAEGNANT dataset, which results in redundant
or even repetitive patient covariates from the feature extractor. This makes the GP model
struggle to capture the correlation correctly. On the contrary, the inducing points in SVGP
or PPGP are not constrained by the raw input features and could avoid this coupling during
the optimization.

For the initialization with pre-training methods, DML helps attain a feature extractor,
which clusters samples with similar targets in nearby regions. Models with all output layers,
including linear layers, achieve moderate improvement. This can be attributed to 1) the
non-convexity nature of the log marginal likelihood objective or the ELBO objective with
deep neural networks, where a good starting point could offer advantages for the following
optimization procedure; 2) the good initialization of the inducing inputs generated by the
pre-trained feature extractor.

5.3. Evaluation of the predictive variances

Apart from improved performance for point estimates, the main advantage of the proposed
method lies in the uncertainty-aware nature of the model. As a baseline, we include MC
Dropout (Gal and Ghahramani, 2016), a well-known method for enabling uncertainty esti-
mates in neural networks. By adding a dropout layer (Srivastava et al., 2014) before each
weight layer, the resulting model is proved to be mathematically equivalent to a proba-
bilistic deep Gaussian Process. In our experiments, we followed the proposed method with
the suggested dropout rate of 0.2. The mean prediction and function variance are com-
puted from performing 50 stochastic forward passes through the network. Since QP plots
demonstrate unstable performance if the number of evaluation pairs in each quantile is too
small (like the test set for the PFS-PRAEGNANT prediction task with only 134 samples
in total), we only report the evaluation on the LoS-MIMIC prediction task in Fig. 3.

In Fig. 3 we visualize the quantile performance for MAD and RMSE, where the solid
line represents an average performance and the error bar for the standard deviation across
CV splits. We observe a strong monotonically increasing line in both metrics from our
DKAFT (PPGP) model. For the evaluation pairs that the model is more confident with,
e.g., ones corresponding to the predictive variances at quantile 10%, the MAD and RMSE
are 1.163±0.030 and 0.316±0.005, respectively. Such results correspond to only half of the
values reported in Tab. 1, indicating a significant improvement. Meanwhile, the DKAFT
(SVGP) model shows an increasing dependency only in MAD. For the models with MC
Dropout, there seems to be no performance difference between quantiles.
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Figure 3: Quantile MAD (left) and Quantile RMSE (right) in the y-axis against quantile
predictive uncertainty in the x-axis for the LoS-MIMIC prediction task. Our
DKAFT model with a PPGP output layer (red) shows the strongest increasing
trend in both MAD and RMSE. This indicates that the model is monotonically
more confident in predictions that are indeed closer to the ground-truths. We
emphasize that this is a desirable feature to expect from an uncertainty-aware
prediction model.

Compared with MC Dropout, our DKAFT models deliver more meaningful uncertainty
estimates since the inducing point technique realizes explicit modeling of the predictive
variances. As expected, the most meaningful uncertainty estimates are visible from the
models with a PPGP output layer, since the function variance is restored explicitly in the
training objective compared to those with an SVGP output layer. These observations indeed
motivated the application of our DKAFT (PPGP) model when meaningful uncertainty
estimates become a higher priority.

5.4. Calibration of the Model

Calibration of a predictive model refers to the statistical consistency between the predic-
tive distribution from the model and the observations (Gneiting et al., 2007), which is
arguably also an important aspect for healthcare applications. In GPs, the predictive vari-
ance incorporates both the modeling uncertainty (function variance) and data uncertainty
(observational noise). Even for data-points lying far from the training data, the resulting
predictive distribution tends to be well-calibrated (Rasmussen and Williams, 2005). In
this section, we demonstrate that our DKAFT models inherit this nice property from GPs.
Meanwhile, as a popular method for calibrating neural networks, MC Dropout is included in
our experiment as a baseline. We visualize the empirical CDF of the normalized residuals
with the predictive variances in Fig. 4. Besides, the CRPS score is computed to have a
quantitative comparison. The CRPS score generalizes the Mean Absolute Error (MAE) to
probabilistic predictions.

In Fig. 4, we visualize the CDF plots for both time-to-event prediction tasks. Graphically
speaking, all methods demonstrate well-calibrated behavior based on their closeness to the
best possible calibrated CDF. The ECDF of our DKAFT models is closer to the ideal CDF
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Figure 4: Empirical CDF of the normalized residual, (yi − µi)/σi, from different models
against an ”ideal CDF” from a standard normal distribution. Continuous Rank-
ing Probability Score is reported to provide a quantitative comparison. All models
show well-calibrated behavior, where our DKAFT models are better calibrated
than the baseline method, MC Dropout.

than MC Dropout. Such observation is also verified by the lower values of the respective
CRPS score. Within DKAFT models, the ones with an SVGP output layer perform slightly
better than those with PPGP and ExactGP output layers in the PFS-PRAEGNANT pre-
diction task. In contrast, the DKAFT models with a PPGP output layer outperform the
ones with an SVGP output layer in the LoS-MIMIC prediction task.

It is worth highlighting that the inference in the MC Dropout requires multiple stochastic
forward passes through the sampled network, which results in significantly slower processing
than in our DKAFT models. This would further motivate the application of the analyt-
ical solutions from the proposed DKAFT models when computational efficiency plays an
essential role in real-world applications, like in real-time response systems.

6. Conclusion and Future Works

In this work, we propose the Deep Kernel Accelerated Failure Time (DKAFT) model to
address the lack of uncertainty estimates in recurrent neural network (RNN) based solutions
for time-to-event prediction tasks. Our DKAFT model consists of an RNN encoder and a
sparse GP as the prediction model. The former serves as a trainable feature extractor to
embed the patient features into a latent space of abstract covariates. The GP-based output
layer consumes the abstract covariates of the patients, and outputs a predictive distribution
for the time-to-event prediction.

We show that the proposed model can be trained in an end-to-end fashion, like typical
neural networks, using stochastic gradient descent-based methods. In addition, a deep
metric learning-based pre-training method is proposed to further improve the performance of
the proposed model. Through experiments on two real-world datasets, the DKAFT models
show better performance in terms of the point estimates than the RNN-based models with
linear output layers. More importantly, the predictive variances from our DKAFT model
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reflect the confidence of the predictions. It produces better metrics evaluation in terms
of RMSE and MAD with monotonically higher confidence about the predictions. Such
uncertainty estimates would improve the trustworthiness of the provided model when it
interacts with the physicians. Furthermore, the predictive variance also serves to improve
the calibration of the model. Compared to MC Dropout, a popular method to augment
the uncertainty in the neural networks, our DKAFT model shows better performance and
enjoys lower computational cost, which motivates its usage in real-world applications.

As future work, we would like to further study the interpretation of the uncertainty in
the proposed model. From a machine learning’s perspective, it refers to checking whether a
test sample lies far from the manifold constituted by the training samples. From a decision
support’s perspective—since our proposed model offers predictive variances based on the
“neighboring” training samples in the feature spaces—it would offer practical help if it also
fits physicians’ understanding.

Limitations As shown in Sec. 3.2, in our DKAFT models, (right) censored observations
will contribute to the training objective through its survival function instead of the proba-
bility density function. However, due to the nature of the time-to-event prediction tasks we
focus on in this work, administrative censoring is not included in the experiments. Besides,
the evaluation of censoring cases is also beyond the scope of this manuscript. We leave
these perspectives as part of our future work.
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Appendix A. Feature Set in MIMIC-III

To best represent the clinical status, we extracted both static and sequential information
from the MIMIC-III. The included features are the same as the Feature Set C defined in
Purushotham et al. (2018). In the chosen features, most have continuous values except for
acquired immunodeficiency syndrome, hematologic malignancy, metastatic cancer, and ad-
mission type. The missing rates of each feature can be found in Table A.26 in Purushotham
et al. (2018).

Static Information: age, acquired immunodeficiency syndrome, hematologic malig-
nancy, metastatic cancer, admission type

Sequential Information: Gastric Tube, Stool Out Stool, Urine Out Incontinent,
Ultrafiltrate, Fecal Bag, Chest Tube 1, Chest Tube 2, Jackson Pratt 1, OR EBL, Pre-
Admission, TF Residual, Albumin 5%, Fresh Frozen Plasma, Lorazepam (Ativan), Calcium
Gluconate, Midazolam (Versed), Phenylephrine, Furosemide (Lasix), Hydralazine, Nore-
pinephrine, Magnesium Sulfate, Nitroglycerin, Insulin Regular, Morphine Sulfate, Potas-
sium Chloride, Packed Red Blood Cells, Gastric Meds, D5 1/2NS, LR, Solution, Sterile
Water, Piggyback, OR Crystalloid Intake, PO Intake, GT Flush, KCL (Bolus), Magnesium
Sulfate (Bolus), Hematocrit, Platelet count, Hemoglobin, MCHC, MCH, MCV, Red blood
cells, RDW, Chloride, Anion gap, Creatinine, Glucose, Magnesium, Calcium total, Phos-
phate, INR(PT), PT, PTT, Lymphocytes, Monocytes, Neutrophils, Basophils, Eosinophils,
PH, Base excess, Calculated total CO2, PCO2, Specific gravity, Lactate, Alanine amino-
transferase (ALT), Asparate aminotransferase (AST), Alkaline phosphatase, ALBUMIN,
Aspirin, Bisacodyl, Docusate Sodium, Humulin-R Insulin, Metoprolol Tartrate, Pantopra-
zolel, Arterial Blood Pressure diastolic, Arterial Blood Pressure mean, Respiratory Rate,
Alarms On, Minute Volume Alarm-Low, Peakinsp.Pressure, PEEP set, Minute Volume,
Tidal Volume (observed), Minute Volume Alarm High, Mean Airway Pressure, Central
Venous Pressure, Respiratory Rate (Set), Pulmonary Artery Pressure mean, O2Flow, Glu-
cose fingerstick, Heart Rate Alarm Low, Pulmonary Artery Pressure systolic, Tidal Volume
(set), Pulmonary Artery Pressure diastolic, SpO2 Desat Limit, Resp Alarm High, Skin Care,
gcsverbal, gcsmotor, gcseyes, systolic blood pressure abp mean, heart rate, body temper-
ature, pao2, fiO2, urinary output sum, serum urea nitrogen level, white blood cells count
mean, serum bicarbonate level mean, sodium level mean, potassium level mean, bilirubin
level, ie ratio mean, diastolic blood pressure mean, arterial pressure mean, respiratory rate,
SpO2 peripheral, glucose, weight, height, hgb, platelet, chloride, creatinine, norepinephrine,
epinephrine, phenylephrine, vasopressin, dopamine, midazolam, fentanyl, propofol, peep,
ph.

Appendix B. ANOVA as an ablation study

We perform ANOVA to further verify the improvements reported in Tab. 1 in terms of
RMSE. In case of the progression-free survival (PFS-PRAEGNANT) prediction task (with
Fasching et al. (2015) dataset), we report a p-value of 0.064 w.r.t. the four choices of the
prediction model, and p-value of 5.9e-6 w.r.t. applying deep metric learning as pre-training
or not. In case of the length-of-stay (LoS-MIMIC) prediction task (with Johnson et al.
(2016) dataset), we report a p-value of 1.5e-6 w.r.t. the three choices of the prediction
model, and p-value of 2.0e-9 w.r.t. applying deep metric learning as pre-training or not.
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Figure 5: Grouped Box plots visualizing a comparison between different models,
RNN+AFT and ExactGP, SVGP, PPGP of our DKAFT models. A similar con-
clusion to the reported p-values from ANOVA could be drawn from these plots.

It appears that only in the case of PFS-PRAEGNANT, the choice of the prediction model
does not have a significant impact on the performance, presumably due to the relatively
small number of patient samples. In Fig. 5 we visualize the effects of these two factors as
grouped box plots.

Appendix C. Experimental Results with More Baselines and Metrics

We conducted experiments for NN-based CPH models using the PyCox package3. Both
continuous-time models (DeepSurv, CoxTime, CoxCC, and PCHazard) and discrete-time
models (LogisticHazard, PMF, DeepHit, MTLR, and BCESurv) are included, where the
latter perform much worse w.r.t. the metrics we are interested in this manuscript. Therefore,
we only report the results for continuous-time models. Besides, we include two neural
network architectures for these models, where a Multiple-Layer Perceptron (MLP) receives
aggregated features like Cox Regression and a Recurrent Neural Network (RNN) refers
to the same base network we used for our DKAFT models. In addition, we report the
concordance index (C-Index) (Harrell et al., 1982) of all methods to show their respective
discriminative performance. From Tab. 3 we can see, that these continuous-time models
only show comparable performance to our strong baseline (RNN+AFT). Meanwhile, the
RNN variants of the same model always improve the performance w.r.t. RMSE and C-Index
as they take the time-dependency of the patient information into consideration.

3https://github.com/havakv/pycox
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